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ON C∗
u− AND Cu− EMBEDDED UNIFORM SPACES

ASYLBEK CHEKEEV1,2, BAKTIYAR RAKHMANKULOV1, AIGUL CHANBAEVA1

Abstract. For a uniform space uX the concept of Cu-embedding (C∗
u-embedding) in some

uniform space is introduced. An analogue of Urysohn’s Theorem is proved and it is established,

that uX is C∗
u−embedded in the Wallman β−like compactification βuX, and any compactifi-

cation of uX in which uX is C∗
u−embedded, must be βuX. A uniformly realcompact space is

determined. It is proved, that uX is Cu−embedded in the Wallman realcompactification υuX,

and any uniform realcompactification in which uX is Cu−embedded, is υuX.
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1. Introduction

Extensions of (bounded) continuous and (bounded) uniformly continuous functions from sub-

spaces of topological and uniform spaces to the whole space are the most important and actual

problems ([2, 8]). For topological spaces the concepts of C∗-embeddings and C-embeddings of

their subspaces, introduced by C. Kohls [13, Notes, Chapter 1] and P. Urysohn, allowed one to

prove that to be a normal space is equivalent to that every closed subspace is C(C∗)−embedded

in it [13, Notes, Chapter 1], [10, 2.1.8]. M. Stone and E. Čech proved that a completely regular

space X is C∗−embedded in its Stone-Čech compactification βX, and any compactification of X

in which X is C∗−embedded must be βX [13, Th. 6.5 (II)]. E. Hewitt proved that a completely

regular space X is C−embedded in its realcompactification υX, and any realcompactification of

X in which X is C−embedded must be υX [13, Th. 8.7 (II)]. M. Katetov [18] proved that any

bounded uniformly continuous function on a uniform subspace can be extended on the whole

space.

In [8], for a uniform space uX the Wallman β−like compactification βuX and the Wall-

man realcompactification υuX have been constructed and their uniformities described. Since

U(uX) ⊂ Cu(X) ⊂ C(X) and U∗(uX) ⊂ C∗
u(uX) ⊂ C∗(X), the concepts of Cu-embedding and

(C∗
u−)embedding of a uniform subspaces are naturally determined (Definition 3.2) and analogues

of Urysohn’s Theorem (Theorem 3.4) and Theorem on Cu−embedding of a C∗
u−embedded sub-

spaces are proved (Theorem 3.5). For the Wallman β−like compactification βuX of a uniform

space uX an analogue of Stone-Čech Theorem is proved: a uniform space uX is C∗
u−embedded

in the Wallman β−like compactification βuX and any compactification of uX, in which uX

is C∗
u−embedded must be βuX (Theorem 3.7, Corollary 3.5, Theorem 3.8). It is also proved

that a unform subspace u′S of the uniform space uX is C∗
u−embedded in uX if and only if
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[S]βuX = βu′S (Proposition 3.3). An example of a uniform space uX which is C∗
u−embedded,

but is not C∗−embedded in βuX is given (Remark 3.2).

The concept of uniformly realcompact uniform space is introduced (Definition 4.2), of its

some properties are studied and the example of a uniform space uX which is Cu−embedded,

but is not C−embedded in the Wallman realcompactification υuX is provided (Theorem 4.1,

Corollary 4.1, Theorem 4.2, Corollary 4.2, Propositions 4.1 and 4.2, Corollaries 4.2 and 4.3). For

a realcompactification υuX of a uniform space uX an analogue of Hewitt Theorem is proved: uX

is Cu−embedded in its Wallman realcompactification υuX, and any uniform realcompactification

in which uX is Cu−embedded is υuX (Theorem 4.4, Corollary 4.4, Theorem 4.5).

2. Notation and preliminaries

All notations and properties of uniform spaces are taken from books [17, 3, 10], a normal

bases properties from [11] and constructions using them from books [1, 15, 20], properties of the

Stone-Čech compatification and its interrelation with rings of functions from books [13, 23].

For a uniform space uX, where u is the uniformity in terms of uniform coverings, we denote

by U(uX) (U∗(uX)) the set of all (bounded) uniformly continuous functions on uX. Zu =

{f−1(0) : f ∈ U(uX)} and, evidently, Zu = {g−1(0) : g ∈ U∗(uX)}. We note that U∗(uX) is a

commutative ring with unit, whereas U(uX), in general, is not so. All sets of Zu are said to be

u−closed [5, 6] and all sets of CZu = {X\Z : Z ∈ Zu} are said to be u−open [3]. When u = uf
is the fine uniformity on a Tychonoff space X, then U(ufX) = C(X)(U∗(ufX) = C∗(X)) is the

set of all (bounded) continuous functions [13, 10]. Zuf
= Z(X) is a family of all zero-sets, and

CZuf
= CZ(X) is a family of all cozero-sets [13]. A family (covering) α consisting of u−open

sets (cozero-sets) is said to be an u−open (a cozero) covering.

Zu is the base of closed sets topology, forms separating, nest-generated intersection ring on

X [21], and hence it is a normal base [11, 15].

Definition 2.1. A mapping f : uX → vY between uniform spaces is said to be a coz−mapping,

if f−1(CZv) ⊆ CZu (or f−1(Zv) ⊆ Zu) [5, 6, 12]. A mapping f : uX → Y from a uniform

space uX into a Tychonoff space Y is said to be zu−continuous, if f−1(CZ(X)) ⊆ CZu (or

f−1(Z(Y )) ⊆ Zu) [9].

Evidently, every uniformly continuous mapping is a coz−mapping, while the converse, gen-

erally speaking, is not true [5, 6, 7]. Also, every zu−continuous mapping f : uX → Y is a

coz−mapping of f : uX → vY for any uniformity v on Y . If Y is a Lindelöf space or (Y, ρ)

is a metric space, then its coz−mapping is a zu−continuous (for example, [5, 6]). If Y = R
or Y = I, then the coz−mapping f : uX → R is said to be a u−continuous function and the

coz−mapping f : uX → I is said to be a u−function [5, 6].

We denote by Cu(X) (C∗
u(X)) the set of all (bounded) u−continuous functions on the uniform

space uX and by Z(uX) the ring of zero-sets functions from Cu(X) or C∗
u(X) and CZ(uX)

consists of complements of sets of Z(uX) and, vice versa.

The topology of a uniform space is generated by its uniformity, and in case of a compactum

X we always use its unique uniformity. The restriction of a uniformity from a uniform space

vY to its subspace X is denoted v|X and the restriction of a function f from Y into R to a

subset X ⊂ Y is denoted f |X . A uniform space uX which has a base of uniform coverings of

cardinality ≤ τ is said to be τ−bounded [3, 4].

We denote the set of all natural numbers by N, R is the real line, uniformity uR on R is

induced by the ordinary metric; I = [0, 1] is a unit interval; for X ⊂ Y and a family of subsets
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F in Y we denote X ∧ F = {X ∩ F : F ∈ F} and by [X]Y the closure of X in Y . For families of

subsets F and F′ we denote F ∧ F′ = {F ∩ F ′ : F ∈ F, F ′ ∈ F′}.
A filter F is called countably centered if ∩n∈NFn ̸= ∅ for any countable subfamily {Fn}n∈N of

the filter F .

The natural uniformity on uX, generated by U (uX) (U∗ (uX)), the uc(up) is the smallest

uniformity on X with respect to all its functions from U (uX) (U∗ (uX)) which are uniformly

continuous. Evidently, up ⊆ uc ⊆ uω ⊆ u, where a base of uniformity uω is formed by all

countable uniform coverings of u. The Samuel compactification suX is a completion of X with

respect to the uniformity up.

Proposition 2.1. [8] The set B∗
p (B∗

ω) of all finite countable u−open coverings of a uniform

space uX is the base of uniformity uzp(u
z
ω). Moreover up ⊆ uzp, up ⊆ uc ⊆ uω ⊆ uzω.

Proposition 2.2. [8] Cu(X) forms a complete subring of C(X) with the inversion. It

contains constant functions, separates points and closed sets, is uniformly closed and is closed

under inversion, i.e. if f ∈ Cu(X) and f(x) ̸= 0 for all x ∈ X then 1/f ∈ Cu(X) (an algebra in

sense of [14, 16]).

Lemma 2.1. [8]

(1) coz−mapping f : uX → vY into a compact space vY is a uniformly continuous mapping

f : uzpX → vY ;

(1’) coz−mapping f : uX → vY into ℵ0−bounded uniform space vY is a uniformly continu-

ous mapping f : uzωX → vY ;

(2) U(uX) = U(ucX) = U(uωX) ⊂ U(uzωX) = Cu(X);

(2’) U(upX) = U∗(uX) ⊂ U(uzpX) = U∗(uzωX) = C∗
u(X) ⊂ Cu(X);

(3) Zu = Zup = Zuc = Zuω = Zuz
p
= Zuz

ω
= Z(uX).

(4) Cu(X) is a complete ring of functions with inversion on X.

Let ω(X,Zu) be the Wallman compactification of X with respect to the normal base Zu [11,

1, 15].

Theorem 2.1. [8] For a uniform space uX the following compactifications of X coincide:

(1) The completion of X with respect to uzp.

(2) The Wallman compactification ω(X,Zu) of X with respect to the normal base Zu.

(3) The compactification which is the set of all maximal ideals of C∗
u(X) equipped with the

Stone topology [22].

We note that ω(X,Zu) is a β−like compactification of X [19], and we put βuX = ω(X,Zu)

Corollary 2.1. [8]

I. Every coz−mapping f : uX → vY can be extended to the continuous mapping

βuf : βuX → βvY [1, 15].

II. The first axiom of countability does not hold in any point x ∈ βuX \X [21].

III. For uniform spaces uX and u′X we have βuX = βu′X if and only if Zu = Zu′ [21].

Theorem 2.2. [8] For a uniform space uX the following conditions are equivalent:

(1) The Samuel compactification suX of uX is a β−like compactification of X;

(2) up = uzp;

(3) any coz−mapping f : uX → K into a compactum K can be extended to suX;

(4) any u−function f : uX → I into I can be extended to suX;

(5) if Z1, Z2 ∈ Zu and Z1 ∩ Z2 = ∅, then [Z1]suX ∩ [Z2]suX = ∅;
(6) [Z1]suX ∩ [Z2]suX = [Z1 ∩ Z2]suX is fulfilled for any Z1, Z2 ∈ Zu;

(7) every point of suX is the limit point for a unique zu−ultrafilter on uX;
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(8) every zu−ultrafilter is a Cauchy filter with respect to up.

Definition 2.2 [21]. TheWallman realcompactification of a uniform space uX is the subspace

υ(X,Zu) = υuX ⊂ βuX consisting of the set of all countably centered zu−ultrafilteres on Zu.

Theorem 2.3. [8] For a uniform space uX the following realcompactifications of X coincide:

(1) the completion of X with respect to uzω;

(2) the Wallman realcompactification υuX = υ(X,Zu);

(3) the intersection of all cozero-sets in βuX which contain X;

(3’) the intersection of all cozero-sets in suX which contain X;

(4) the Q−closure of X in βuX;

(4’) the Q−closure of X in suX;

(5) the weak completion µuz
ω
X coincides with the completion of X with respect to uzω;

(6) the weak completion µuωX of X with respect to uω;

(7) the weak completion µucX of X with respect to uc.

Let Xυ be some realcompactification of X, uυω be a uniformity on Xυ whose base consists of

all countable cozero-sets coverings, uυc be the smallest uniformity on Xυ in which all functions

from C(Xυ) are uniformly continuous [10, 8.19, 8.1.D, 8.1.I, 8.3.19, 8.3.F], Z(C(Xυ)) be the

ring of zero-sets of functions from C(Xυ) and ZXυ = X ∧ Z(C(Xυ)).

Theorem 2.4. [8] For a realcompactification Xυ of X the following conditions are equivalent:

(1) Xυ is the completion of X with respect to uω = uυω|X ;

(2) Xυ is the weak completion µucXof X with respect to uc = uυc |X ;

(3) Xυ is the Wallman realcompactification υuω(X,ZXυ) of X with respect to ZXυ ;

(4) any zuω−continuous mapping f : uωX → Y into a realcompact space Y has zuυ
ω
−continuous

extension to Xυ;

(5) any zuω−continuous function f : uωX → R has zuυ
ω
−continuous extension to Xυ;

(6) for any {Zi}i∈N ⊂ ZXυ such that ∩i∈NZi = ∅ it follows ∩i∈N[Zi]Xυ = ∅;
(7) ∩i∈N[Zi]Xυ = [∩i∈NZi]Xυ is fulfilled for any {Zi}i∈N ⊂ ZXυ ;

(8) each point in Xυ is the limit of a unique countably centered zuω−ultrafilter on X.

For the interrelations of u−closed set filters with the ideals of rings Cu(X)(C∗
u(X)) by analogy

with Chapter 2 of [13] we introduce the next notions.

Definition 2.3. A nonempty subfamily F of Zu is said to be a zu−filter on uX provided

that (i) ∅ /∈ F ; (ii) if Z1, Z2 ∈ F , then Z1 ∩ Z2 ∈ F ; (iii) if Z ∈ F , Z ′ ∈ Zu and Z ⊂ Z ′, then

Z ′ ∈ F .

A natural mapping Z : Cu(X) → Zu, where for any f ∈ Cu(X), Z(f) = {x ∈ X : f(x) =

0} = f−1(0) ∈ Zu, is determined.

Theorem 2.5. If I is an ideal of the ring Cu(X), then the family Z(I) = {Z(f) : f ∈ I} is

a zu−filter on uX, and, vice versa, if F is a zu−filter on uX, then the family Z−1(F) = {f :

Z(f) ∈ F} is an ideal in Cu(X).

Proof. It is similar to [13, Th. 2.3]. �

By a zu−ultrafilter on uX is meant a maximal zu−filter, i.e. one not contained in any other

zu−filters.

Theorem 2.6. If I is a maximal ideal of the ring Cu(X), then Z(I) is a zu−ultrafilter on

uX and if p is a zu−ultrafilter on uX, then Z−1(p) is a maximal ideal in Cu(X). The mapping

Z : Cu(X) → Zu is one-to-one from the set of all maximal ideals in Cu(X) onto the set of all

zu−ultrafilters
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Proof. It is analogically to [13, Th. 2.5]. �

Theorem 2.7.

(a) Let I be a maximal ideal in the ring Cu(X). If Z(f) meets every member of Z(I), then

f ∈ I.

(b) Let p be a zu−ultrafilter on uX. If an u−closed set Z meets every member of p, then

Z ∈ p.

Proof. The proof is similar to that of [13, Th. 2.6]. �

Theorem 2.8. Let I be an ideal in Cu(X) such that if Z(f) ∈ Z(I), then it implies f ∈ I.

Then the next statements are equivalent:

(1) I is prime.

(2) I contains a prime ideal.

(3) For all g, h ∈ Cu(X), if gh = 0, then g ∈ I or h ∈ I.

(4) For every f ∈ Cu(X) there is an u−closed set Z(f) on which f does not change sign.

Proof. Analogically to [13, Th. 2.9]. �

Theorem 2.9. Every prime ideal in Cu(X) is contained in a unique maximal ideal.

Proof. Similarly to [13, Th. 2.11]. �

Definition 2.4. Let F be a zu−filter. If Z1, Z2 ∈ Zu and from Z1 ∪ Z2 ∈ F it follows that

either Z1 ∈ F or Z2 ∈ F , then F is said to be a prime zu−filter .

Theorem 2.9.

(a) If I is a prime ideal in Cu(X), then Z(I) is a prime zu−filter.

(b) If F is a prime zu−filter, then Z−1(F) is a prime zu−ideal.

Proof. It is analogically to [13, Th. 2.12]. �

Corollary 2.2. Every prime zu− filter is contained in a unique zu−ultrafilter.

Proof. It immediately follows from the Theorems 2.6 and 2.9. �

Definition 2.4. Let I be any ideal in Cu(X) (or C∗
u(X)). If ∩Z(I) ̸= ∅, then I is said to be

a fixed ideal; otherwise, I is said to be a free ideal.

Theorem 2.10. The following statements are equivalent:

(1) uX is a compact uniform space.

(2) Every ideal in Cu(X) is fixed, i.e. every zu−filter is fixed

(2’) Every ideal in C∗
u(X) is fixed.

(3) Every maximal ideal in Cu(X) is fixed, i.e. every zu−ultrafilter is fixed

(3’) Every maximal ideal in C∗
u(X) is fixed.

Proof. It is analogically to [13, Th. 4.11]. �

Lemma 2.2. Let f : uX → vY be a coz− mapping and let F be a prime zu−filter on uX.

Then f ♯(F) = {Z ∈ Zv : f−1(Z) ∈ F} is a prime zv−filter on vY .

Proof. It is analogically to [13, Th. 4.12]. �
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3. C∗
u− embedding in β− like compactifications

Definition 3.1. Two subsets A and B of uX are said to be u−separated in uX if there exists

a u−function f : uX → I such that f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B.

Remark 3.1. If Z1, Z2 ∈ Zu on uX and Z1∩Z2 = ∅, then the function f(x) = g1(x)/(g1(x)+

g2(x)) is a u−function [5, 6], where gi : uX → I are uniformly continuous functions, Zi = g−1
i (0),

(i = 1, 2) and f(Z1) = {0}, f(Z2) = {1}. Any segment [−r, r] is uniformly homeomorphic to I.

Let h : I → [−r, r] be a uniform homeomorphism such that h(0) = {−r}, h(1) = {r}. Then the

function F : uX → [−r, r], where F = h ◦ f , is u−continuous and F (Z1) = {−r}, F (Z2) = {r}.
Theorem 3.1. Two sets in uX are u− separated if and only if they are contained in disjoint

u− closed sets. Moreover, u−separated sets have disjoint u−closed neighborhoods.

Proof. Let A and B be u−separated in uX. Then there exists u−function f : uX → I such

that f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B. The sets Z1 = {x : f(x) ≤ 1/3} and

Z2 = {x : f(x) ≥ 2/3} are u−closed neighborhoods of A and B, respectively, and Z1 ∩ Z2 = ∅.
Conversely, if A ⊂ Z1, B ⊂ Z2, Zi ∈ Zu, i = 1, 2, and Z1 ∩Z2 = ∅, then, according to Remark

3.2, there exists a u− function f : uX → I such that f(x) = 0 for all x ∈ Z1 and f(x) = 1 for

all x ∈ Z2. Hence A and B are u−separated in uX. �

Corollary 3.1. If A and B are u− separated in uX, then there exist u−closed sets F and

Z such that A ⊂ X \ Z ⊂ F ⊂ X \B.

Proof. Let f : uX → I be a u−function such that f(x) = 0 for all x ∈ A and f(x) = 1 for all

x ∈ B. Put F = {x : f(x) ≤ 1/3} and Z = {x : f(x) ≥ 1/3}. Then F and Z are u−closed sets

and it is easy to check, that the condition of this corollary is fulfilled. �

Corollary 3.2. Every neighborhood of a point in a uniform space uX contains a u−closed-

neighborhood of the point.

Proof. Let x ∈ X be an arbitrary point and x ∈ O be an arbitrary open neighborhood of the

point x. Then x /∈ F = X \ O and F is a closed set in X. Hence, there exists a uniformly

continuous function f : uX → I such that f(x) = 0 and f(x) = 1 [3, 10, 17]. Every uniformly

continuous function is u−continuous, hence, x and F are u−separated and the remaining follows

from Corollary 3.4. �

Let uX be a uniform space. A point x ∈ X is said to be a cluster point of a zu− filter F if

every neighborhood of x meets every member of F . The zu−filter F is said to converge to the

limit x if every neighborhood of x contains a member of F .

Proposition 3.1. A zu−filter F converges to x if and only if F contains the zu−filter of

all u−closed-neighborhoods of x. If x is a cluster point of a zu−filter F , then at least one

zu−ultrafilter containing F converges to x.

Proof. It is analogically to [13, Th.3.16]. �

Theorem 3.2. Let uX be a uniform space, x ∈ X and let F be a prime zu−filter on uX.

The following conditions are equivalent:

(1) x is a cluster point of F .

(2) F converges to x.

(3) ∩F = {x}.

Proof. It is analogically to [13, Th.3.17]. �



A.A. CHEKEEV et al: ON C∗
u− AND Cu− EMBEDDED UNIFORM SPACES 179

Theorem 3.3. Let px be a family of all u−closed sets containing a given point x of a uniform

space uX. Then

(a) x is a cluster point of a zu−filter F if and only if F ⊂ px.

(b) px is the unique zu−ultrafilter converging to x.

(c) Distinct zu−ultrafilters cannot have a common cluster point.

(d) If F is a zu−filter converging to x, then px is the unique zu−ultrafilter containing F .

Proof. It immediately follows from 3.5, 3.6, 3.7. �

Definition 3.2. Let X be a subspace of a Tychonoff space Y and u be a uniformity on

X, v be a uniformity on Y such that Zv ∧ X = Zu. The uniform space uX is said to be

Cu(C
∗
u)−embedded in the uniform space vY , if any function of Cu(X) (C∗

u(X)) can be extended

to a function in Cv(Y ) (C∗
v (Y )).

Theorem 3.4. (Urysohn’s Extension Theorem) Let X be a subspace of a Tychonoff space

Y , u be a uniformity on X and v be a uniformity on Y such that Zv ∧ X = Zu. Then uX is

C∗
u−embedded in vY if and only if any two u−separated sets in X are v−separated in Y .

Proof. Necessity. If A and B are u−separated sets in uX, there exists a function f in C∗
u(X)

that is equal to 0 on A and 1 on B. By hypothesis, f has an extension to a function g in C∗
v (Y ).

Since g is 0 on A and 1 on B, these sets are u−separated sets in vY .

Sufficiency. Let f1 be a given function in C∗
u(X). Then |f1| ≤ m for some m ∈ N. Define

rn = (m/2)(2/3)n, n ∈ N. Then |f1| ≤ m = 3r1. Inductively, given fn ∈ C∗
u(X) with |fn| ≤ 3rn,

define An = {x ∈ X : fn(x) ≤ −rn} and Bn = {x ∈ X : fn(x) ≥ rn}. Then An and Bn are

u−closed sets in uX and An ∩ Bn = ∅. Then, by Remark 3.1, An and Bn are u−separated in

uX. Accordingly, there exists a function gn in C∗
v (Y ) equal to −rn on An and 2rn on Bn with

|gn| ≤ rn. The values of fn and gn on An lie between −3rn and −rn; on Bn, they lie between

rn and 3rn; and elsewhere on X they are between −rn and rn. Let fn+1 = fn − gn|X and we

have |fn+1| ≤ 2rn, i.e. |fn+1| ≤ 3rn+1. This completes the induction step.

Now put g(x) = Σn∈Ngn(x), x ∈ X. Since the series Σn∈Nrn converges uniformly and since

|gn| ≤ rn for all n ∈ N, it follows that Σn∈Ngn(x) converges uniformly and, by Proposition 2.3, g is

a bounded v−continuous function, i.e. g ∈ C∗
v (Y ). For every n ∈ N we have (g1+g2+...+gn)|X =

(f1− f2)+ (f2− f3)+ ...+(fn− fn+1), i.e. (g1+ g2+ ...+ gn)|X = f1− fn+1. Since the sequence

{fn+1(x) : n ∈ N} approaches 0 at every x of X, this shows that g(x) = f1(x) for all x ∈ X.

Thus, g is a v−continuous extension of f1. �

Corollary 3.2. Let uX be a uniform subspace of vY . Then uX is C∗
u−embedded in vY if

and only if any two u−separated sets in X are v−separated in Y .

Proof. It immediately follows from Theorem 3.5, since u = v|X , hence Zv ∧X = Zu. �

Corollary 3.3. Let X be a subspace of a Tychonoff space Y , S be a subspace of X, u be a

uniformity on X, v a uniformity on Y and w a uniformity on S such that Zw = Zu ∧ S both

Zu = Zv ∧X and uX is Cu− (C∗
u−)embedded in vY . Then wS is Cw- (C

∗
w)−embedded in vY

if and only if wS is Cw− (C∗
w)−embedded in uX.

Proof. Let wS be Cw(C
∗
w)−embedded in vY , i.e. any w−continuous (bounded) function

f ∈ Cw(X)(C∗
w(X)) can be extended to v−continuous function g ∈ Cv(Y ) (C∗

v (Y )). It is

correctly, as Zw = Zv ∧ X. Evidently, h : g|X ∈ Cu(X) (C∗
u(X)) and h is a u−continuous

(bounded) extension of the function f . The converse statement is obvious. �
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Theorem 2.4. A C∗
u−embedded subset is Cu−embedded if and only if it is u−separated

from every u−closed set disjoint from it.

Proof. Let uX be C∗
u−embedded in vY . Let Z(h) = h−1(0) be v−closed in Y and Z(h) ∩X =

∅. Then h(x) ̸= 0 for all x ∈ X. Then, by Proposition 2.2, the function f(x) = 1/h(x) is

u−continuous for all x ∈ X, i.e. f ∈ Cu(X). Let g be a u−continuous extension of f on X.

Then g · h belongs to Cv(Y ) (Proposition 2.2) and equals to 1 on X and 0 on Z(h).

Conversely, let f ∈ Cu(X) be an arbitrary function. Then arctg ◦ f : uX → (−π/2;π/2) is

a u−continuous bounded function on uX, i.e. arctg ◦ f ∈ C∗
u(X). Let g be a v−continuous

extension of arctg ◦ f , i.e. g ∈ Cv(Y ). A set Z = {x ∈ Y : |g(x)| ≥ π/2} is v−closed and

Z ∩X = ∅. By the condition there exists a function h ∈ Cv(Y ) which is equal to 1 on X and 0

on Z, |h| ≤ 1. A function g · h is v−continuous, by Proposition 2.3, and g · h|X = arctg ◦ f and

|(g · h)(x)| < π/2 for all x ∈ Y . Thus, tg ◦ (g · h) is a v−continuous extension of f on Y . �

Definition 3.3. Let uX be a uniform space, and X dense in a Tychonoff space Y . A point

x ∈ Y is a cluster point of zu−filter F on uX, if every neighborhood of point x in Y meets every

member of F , and x is a cluster point of F provided that p ∈ ∩{[Z]Y : Z ∈ F}.
We will say, that zu−filter F converges to a limit x, if every neighborhood of point x in Y

contains a member of F .

Lemma 3.1. Let uX be a uniform space, X be dense in a Tychonoff space Y and v be a

uniformity on Y such that Zv ∧X = Zu. If Z is a u−closed set in uX and x ∈ [Z]Y , then at

least one zu−ultrafilter on uX contains Z and converges to x.

Proof. Let F be a zv−filter on vY of all v−closed-set-neighborhoods of x and F ′ = F ∧ X.

Since x ∈ [Z]Y , F ′ ∪ {Z} ⊆ Zu has the finite intersection property, and so is contained in a

zu−ultrafilter px. Clearly px converges to x. �

Corollary 3.3. Under conditions of Lemma 3.1, every point in Y is the limit of at least one

zu−ultrafilter on uX.

Proof. It immediately follows from Lemma 3.1 under Z = X. �

Theorem 3.6. Let uX be a uniform space, X be dense in a Tychonoff space Y , and v be a

uniformity on Y such that Zv∧X = Zu, and every point of Y be a limit of unique zu−ultrafilter

on uX. Then on a Y there exists a precompact uniformity vzp such that vzp|X = uzp.

Proof. For any point x ∈ Y , px is a unique zu−ultrafilter on uX, converging to x. Let Z ∈ Zu

be an arbitrary member. Put Z = {x ∈ Y : Z ∈ px}.
Lemma 3.2. Under conditions of Theorem 3.6, if Z ∈ Zu, then the set Z = {x ∈ Y : Z ∈ px}

is closed in Y and for any Zn ∈ Zu (n = 1, 2)(i) Z1 ∪ Z2 = Z1 ∪ Z2 and (ii)Z1 ∩ Z2 = Z1 ∩ Z2.

Proof. Evidently that Z ⊂ Z. From Lemma 3.1 it follows, that if x ∈ [Z]Y , then Z ∈ px and

x ∈ Z. Hence Z = [Z]Y . The inclusion Z1 ∪ Z2 ⊆ Z1 ∪ Z2 is obvious. Let x ∈ Z1 ∪ Z2. Then

Z1 ∪ Z2 ∈ px and px is a zu−ultrafilter on uX, converging to the point x. Since px is a prime

zu−filter, then either Z1 ∈ px, or Z2 ∈ px. So, either x ∈ Z1, or x ∈ Z2, i.e. Z1 ∪ Z2 ⊆ Z1 ∪ Z2

and the item (i) is fulfilled.

For the item (ii) the inclusion Z1 ∩ Z2 ⊆ Z1 ∩ Z2 is obvious. Let x ∈ Z1 ∩ Z2. Then Z1 ∈ px,

Z2 ∈ px and px is a zu−ultrafilter on uX, converging to the point x. So, Z1 ∩ Z2 ∈ px and

x ∈ Z1 ∩ Z2. The item (ii) is fulfilled. Lemma is proved. �
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We continue the proof of Theorem 3.6.

Let α = {Ui : i = 1, ..., n} ∈ B∗
p be an arbitrary finite u−open covering of the uniformity uzp

(Proposition 2.1). Let ExY Ui = Y \X\Ui (i = 1, ..., n). Then ExY Ui is open in Y and from the

equality (ii) it follows that the family ExY α = {ExY Ui : i = 1, ..., n} is an open covering of Y .

It is easy to prove, that the finite open covering B∗
p = {ExY α : α ∈ B∗

p} is a base of precompact

uniformity vzp. By the construction ExY α ∧X = α, hence vzp|X = uzp �

Corollary 3.4. In the conditions of Theorem 3.6, for the uniformity vzp we have Zvzp ∧X =

Zuz
p
= Zu.

Proof. It follows from vzp|X = uzp and the item (3) of Lemma 2.4. �

Theorem 3.7. Let uX be a uniform space, X be dense in a Tychonoff space Y , and v be a

uniformity on Y such that Zv ∧X = Zu. The following statements are equivalent:

(1) Every coz−mapping f from uX into any compact uniform space νK has an extension

to a coz−mapping f̂ from vY into νK.

(2) uX is C∗
u−embedded in vY .

(3) Any two disjoint u−closed sets in uX have disjoint closures in vY .

(4) For any two u−closed sets Z1 and Z2 in uX,

[Z1 ∩ Z2]Y = [Z1]Y ∩ [Z2]Y .

(5) Every point of Y is the limit of a unique zu−ultrafilter on uX.

(6) X ⊂ Y ⊂ βuX.

(7) βvY = βuX.

Proof. (1) ⇒ (2). A u−continuous function f in C∗
u(X) is a coz−mapping into the compact

subsets K = [f(x)]R of R with respect to the uniformity v = uR|K . Hence, item (2) is fulfilled.

(2) ⇒ (3). It follows from Theorem 3.4.

(3) ⇒ (4). If x ∈ [Z1]Y ∩ [Z2]Y , then for every u−closed-set-neighborhood V of x in Y we have

x ∈ [V ∩ Z1]Y and x ∈ [V ∩ Z2]Y . By (3), it implies V ∩ Z1 ∩ V ∩ Z2 ̸= ∅, i.e. V ∩ Z1 ∩ Z2 ̸= ∅.
Therefore x ∈ [Z1 ∩Z2]. Thus [Z1]Y ∩ [Z2]Y is contained in [Z1 ∩Z2]Y . The reverse inclusion is

obvious.

(4) ⇒ (5). By Lemma 3.1, each point of Y is the limit of at least one zu−ultrafilter. Distinct

zu−ultrafilters contain disjoint u−closed sets (Theorem 3.2 (c)) and by (4) it implies that a

point x cannot belong to the closures of both these u−closed sets. Hence, the two distinct

zu−ultrafilters cannot both converge to x.

(5) ⇒ (1). Given x ∈ Y , let px denote the unique zu−ultrafilter on uX with the limit x. As in

Lemma 2.2, we write f ♯(px) = {E ∈ Zν : f−1(E) ∈ px}. This is a prime zν−filter on a compact

uniform space νK, and so it has a cluster point. Therefore, by Theorem 3.2, f ♯(px) has a limit in

νK. Denote this limit by {y} = ∩{f ♯(F)}. It means that it is determined a mapping f̂ from vY

into νK. In case x ∈ X, we have {x} = ∩px, so that y = f̂(x) = f(x) = ∩f ♯(px). Therefore f̂

agrees with f on X. As f−1(F ) ∈ Zu for all ν−closed sets F ∈ Zν , then for a mapping f̂ : Y →
νK the equality f−1(F ) = f̂−1(F ) holds for all F ∈ Zν , where f−1(F ) = {x ∈ Y : f−1(F ) ∈ px}
(as in the proof of Theorem 3.6). Then for any finite cozero-covering β = {Vi : i = 1, 2, ..., n} ∈ ν

of the compact K, the covering f̂−1(β) = {f̂−1(Vi) : i = 1, 2, ..., n} is an open covering of Y ,

as, by Theorem 3.6, f̂−1(Vi) = Y \ f−1(K \ Vi) (i = 1, 2, ..., n) and f̂−1(β) ∈ vzp. Hence

f̂ : vzpY → νK is a uniformly continuous mapping. By Corollary 3.4, Zvzp ∧X = Zuz
p
= Zu. We

note that f̂−1(F ) ∈ Zuz
p
for any F ∈ Zν . Evidently, f̂−1(F ) ∩X = f−1(F ) ∩X = f−1(F ) and

f−1(F ) ∈ Zv ∧X. Then there exist v−closed sets Zn ∈ Zv (n ∈ N) such that Int(Zn) ̸= ∅ and
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f−1(F ) = ∩n∈N{Zn ∩ X}. We have f̂−1(F ) = f−1(F ) = ∩n∈N{Zn ∩X} = ∩n∈NZn (it follows

from the proof of Theorem 3.6). Thus, f̂−1(F ) is v−closed set, i.e. the mapping f̂ : vY → νK

is v−continuous.

(5) ⇒ (7). By Theorem 3.6, a completion of Y , with respect to the uniformity vzp, is the

Samuel compactification svzpY of the uniform space vzpY and vzp|X = uzp. Since X is dense

in Y , then svzpY = βuX. From (7) of Theorem 2.2 and (5) it follows that each point of the

compactification svzpY is the limit of a unique zu−ultrafilter on uX, hence by Corollary 3.4,

each point of svzpY is the limit of a unique zv−ultrafilter on vY . So, by (7) of Theorem 2.2, we

have svzpY = βvY = βuX.

(7) ⇒ (6). X ⊂ Y ⊂ βvY = βuX.

(6) ⇒ (2). The uniform space uX is C∗
u−embedded in the compactification βuX. By (1)

of Theorem 2.1, (2) of Theorem 2.2, Theorem 3.6 and Corollary 3.2, it follows, that uX is

C∗
u−embedded in the uniform space vY . �

Corollary 3.5. Let uX be a dense uniform subspace of the uniform space vY . The following

statements are equivalent:

(1) Every coz−mapping f from uX into any compact uniform space νK has an extension

to a coz−mapping f̂ from vY into νK.

(2) uX is C∗
u−embedded in vY .

(3) Any two disjoint u−closed sets in uX have disjoint closures in vY .

(4) For any two u−closed sets Z1 and Z2 in uX,

[Z1 ∩ Z2]Y = [Z1]Y ∩ [Z2]Y .

(5) Every point of Y is the limit of a unique zu−ultrafilter on uX.

(6) X ⊂ Y ⊂ βuX.

(7) βvY = βuX.

Proof. It immediately follows from Theorem 3.7, since u = v|X , hence Zv ∧X = Zu. �

Theorem 3.8. Every uniform space uX has a β−like compactification βuX with the next

equivalent properties:

(I) Every coz−mapping f from uX into any compact space νK has a continuous extension

βuf from βuX into K.

(II) uX is C∗
u−embedded in βuX.

(III) Any two disjoint u−closed sets in uX have disjoint closures in βuX.

(IV) For any two u−closed sets Z1 and Z2 in uX,

[Z1 ∩ Z2]βuX = [Z1]βuX ∩ [Z2]βuX .

(V) Distinct zu−ultrafilters on uX have distinct limits in βuX.

The compactification βuX is unique in the following sense: if a compactification Y of uX

satisfies any of listed conditions, then there exists a homeomorphism of βuX onto Y that leaves

X pointwise fixed.

Proof. By Theorem 3.7, if a compactification Y satisfies any of (I) - (IV), it satisfies all of them.

By (I), the identity mapping on uX (which is a coz−mapping into the compact uniform space

vY ) has a β−like extension from βuX into vY ; similarly, it has an extension from vY into

βuX (by Corollary 2.1). It follows that these extensions are homeomorphisms onto [10, 2.1.9,

3.5.4]. �

Proposition 3.2. The next statements are equivalent:
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(a) In a uniform space uX any two disjoint closed sets, one of which is compact, are

u−separated.

(b) In a uniform space uX every Gδ−set containing a compact set K, contains a u−closed

set containing K.

(c) Every compact uniform subspace νK of a uniform space uX is Cν−embedded.

Proof. (a) Let F and F ′ be disjoint closed sets in uX with F is compact. For each x ∈ F , choose

disjoint u−closed sets Zx and Z ′
x, with Zx is a u−closed-sets-neighborhood of x and Z ′

x ⊃ F ′.

The covering {Zx : x ∈ F} of the compact set F has a finite subcovering {Zx1 , ..., Zxn}. Then F

and F ′ are contained in the disjoint u−closed sets Zx1 ∪ ...∪Zxn and Z ′
x1
∩ ...∩Z ′

xn
, respectively.

Hence, by Theorem 3.1, F and F ′ are u−separated.

(b) A Gδ−set G has the form ∩n∈NUn, where each Un is open in uX. If G ⊃ K, then K

is u−separated from X\Un, by item (a), and so, by Corollary 3.1, there is a u−closed set Fn

satisfying K ⊂ Fn ⊂ Un. Then K ⊂ ∩n∈NFn ⊂ G and ∩n∈NFn, as a countable intersection of

u−closed sets is a u−closed set.

(c) Let νK be a compact uniform subspace of a uniform space uX. If F and F ′ are

ν−separated in νK, then F and F ′ have disjoint closures in K. As these closures are com-

pact, they are, by (a), u−separated in uX. By Theorem 3.4, compact νK is C∗
ν−embedded in

uX. By (b), the compact set K is u−separated from every u−closed set disjoint from it. Hence

the compact uniform subspace νK is Cν−embedded in uX. �

Proposition 3.3. Let u′S be a uniform subspace of uX. Then

(a) u′S is C∗
u′−embedded in uX if and only if it is C∗

u′−embedded in βuX.

(b) u′S is C∗
u′−embedded in uX if and only if [S]βuX = βu′S.

Proof. (a) It is obvious.

(b) By (c) of Proposition 3.2, the compact uniform subspace K = [S]βuX of the compactum

βuX is C∗
ν−embedded in βuX, where ν is a uniformity on K, induced by the unique uniformity

of the compactification βuX. So, the conditions of (b) hold if and only if the uniform space u′S

is C∗
u′−embedded in βu′S and the compactum K = [S]βuX satisfies (2) of Theorem 3.7 and is a

compactification of u′S, in which u′S is C∗
u′−embedded. �

Remark 3.2. In [8] there is an example of a uniform space uX such that βuX ̸= βX. Then

uX is C∗
u−embedded, but it is not C∗−embedded in the compactification βuX, because if uX

is C∗−embedded in βuX, then βuX = βX. A contradiction.

4. Cu− embedding in realcompactifications

Definition 4.1. [12] A mapping f : uX → vY is said to be a coz−homeomorphism, if f is

a coz− mapping of uX onto vY in a one-to-one way, and the inverse mapping f−1 : vY → uX

is a coz−mapping. A two uniform spaces uX and vY are coz−homeomorphic if there exists a

coz− homeomorphism of uX onto vY .

Definition 4.2. A uniform space uX is said to be uniformly realcompact if it is coz−homeomorphic

to a closed uniform subspace of a power of R.
Remark 4.1. By analogue with [13], an ideal I ⊂ Cu(X) is said to be a fixed, if ∩Z(I) =

∩{Z(f) : f ∈ I} ̸= ∅, and if Z(I) is a countably centered zu−ultrafilter, then a maximal ideal I

is said to be a real ideal.

Theorem 4.1. For uniform space uX the following conditions are equivalent:

(1) uX is uniformly realcompact;
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(2) X is complete with respect to the uniformity uzω;

(3) uX = υuX;

(4) each countably centered zu−ultrafilter is convergent;

(5) each point in X is the limit of a unique countably centered zu−ultrafilter on uX.

(6) every real maximal ideal in Cu(X) is fixed.

Proof. (1) ⇒ (2) Let i : uX → Rτ be a coz−homeomorphism of the uniform space uX onto

a closed uniform subspace X ′ = i(X) ⊂ Rτ with the uniformity u′ = uτR|i(X), where Rτ (uτR)

is a power of R(uR). The uniform space uτRRτ is ℵ0−bounded and complete [3], hence u′X ′

is also ℵ0−bounded and complete [3]. Then X ′ is complete with respect to the uniformity u′zω
(Proposition 2.1). From (1’) of Lemma 2.1 it follows that the uniform spaces uzωX and u′zωX

′

are uniformly homeomorphic, so X is complete with respect to the uniformity uzω (Proposition

2.1).

(2) ⇔ (3) It follows from items (1), (2) of Theorem 2.3.

(3) ⇔ (4) ⇔ (5). It follows from items (1), (8) of Theorem 2.4.

(5) ⇔ (6). It is obvious (Remark 4.1).

(2) ⇒ (1). Let |Cu(X)| = τ . By Lemma 2.1 (2), Cu(X) = U(uzωX), hence the uniform

space uzωX is uniformly homeomorphically embedded into Rτ , i.e. the uniform space uX is

coz−homeomorphically embedded into Rτ . From (2) it follows that uX is coz−homeomorphic

to a closed uniform subspace of uτRRτ . �

Lemma 4.1. [21] If p ⊂ Z(X) is a filter closed under countable intersections and ∩p = ∅,
then on a Tychonoff space X there exists a closed set base, which is separating, nest-generated

intersection ring and there exists a uniformity u such, that p ∈ υuX.

Proof. [21, Lemma 3.5]. We put F = {Z ∈ Z(X) : Z ∈ p or Z ∩ P = ∅ for some P ∈ p}. Then
F is separating, nest-generated intersection ring and the Wallman compactification ω(X,F) is

a β−like [21] compactification. All countable coverings from the family CF = {X\Z : Z ∈ F}
are the uniformity u on X. Therefore ω(X,F) = βuX, υ(X,F) = υuX and p is a free countably

centered zu−ultrafilter on the uniform space uX, i.e. p ∈ υuX. �

Corollary 4.1. If X is a realcompact and non-Lindelöf space, then there exists a uniformity

u on X such that uX is not uniformly realcompact. The uniform space uX is Cu−embedded,

but it is not C−embedded in υuX.

Proof. If X is realcompact and non-Lindelöf, then there is a filter p ⊂ Z(X), which is closed

under countable intersections, and ∩p = ∅ [10, 3.8.3]. By Lemma 4.1, on X there exists a

uniformity u such, that X ̸= υuX, i.e. the uniform space uX is not uniformly realcompact.

Evidently, uX is Cu−embedded in υuX. If uX is C−embedded in υuX, then υX = X = υuX,

but X ̸= υuX, and we have a contradiction. �

The next theorem characterizes the Tychonoff Lindelöf spaces by means of uniform structures.

Theorem 4.2. A Tychonoff space X is Lindelöf if and only if uX is uniformly realcompact

for any uniformity u on X.

Proof. If a Tychonoff space X is Lindelöf, then evidently uX is uniformly realcompact ([10,

3.8.3], item (2) of Theorem 4.1).

Let uX be uniformly realcompact for any uniformity u onX. Suppose thatX is a non-Lindelöf

space. Then on X there is a countably centered z−filter p ⊂ Z(X) such that ∩p = ∅ [10, 3.8.3].

Then, by Lemma 4.1, there exists a uniformity u on X such that X ̸= υuX, i.e. the uniform

space uX is not uniformly realcompact. A contradiction. �
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Corollary 4.2. Every open uniform subspace of the ℵ0−bounded metrizable uniform space

is uniformly realcompact.

Proof. Every ℵ0−bounded metrizable uniform space possesses a countable base [3]. Hence it is

hereditary Lindelöf, i.e. any open subspace is Lindelöf [10, 3.8.A] and it is uniformly realcompact

with respect to each uniformity on it. �

Proposition 4.1. A closed uniform subspace of a uniformly realcompact space is uniformly

realcompact.

Proof. Let vY be a closed uniform subspace of the uniformly realcompact space uX, where

v = u|Y . A space X is complete under the uniformity uzω (Proposition 2.1 and item (2) of

Theorem 4.4), hence vY is complete with respect to the uniformity uzω|X . As uzω|X ⊂ vzω
(Proposition 2.1), vY is complete with respect to the uniformity vzω and the uniform space vY

is uniformly realcompact. �

Proposition 4.2. A product of any collection of uniformly realcompact spaces is uniformly

realcompact if and only if every factor is uniformly realcompact.

Proof. Let {utXt : t ∈ T} be an arbitrary collection of the uniformly realcompact spaces, i.e.

utXt is complete under the uniformity uzt,ω (Proposition 2.1) for any t ∈ T . Let X =
∏
{Xt :

t ∈ T}, u =
∏
{ut : t ∈ T} and v =

∏
{uzt,ω : t ∈ T}. Then the uniform space uX is complete

with respect to the uniformity v. Evidently, v ⊂ uzω (Proposition 2.1). So, uX is complete with

respect to the uniformity uzω and uX is a uniformly realcompact space.

The proof of the second part follows from Proposition 4.9. �

From Propositions 4.1. and 4.2. the next statement immediately follows.

Corollary 4.2. A limit of an inverse system consisting of uniformly realcompact spaces and

”short” projections, being coz−mappings, is uniformly realcompact.

Corollary 4.3. Let {utXt : t ∈ T} be a collection of uniformly realcompact uniform subspaces

of the uniformly realcompact space uX, i.e. ut = u|Xt for any t ∈ T . Then the intersection

∩{Xt : t ∈ T} = Y , equipped by the uniformity v = u|Y , is uniformly realcompact.

Proof. Let X ′ =
∏
{Xt : t ∈ T} and u′ =

∏
{ut : t ∈ T}. Then the uniform space u′X ′ is

uniformly realcompact (by Proposition 4.2) and it is a uniform subspace of uTXT , where T is

a power of uX. The diagonal ∆ of the power XT is a closed subspace. Evidently, the uniform

space vY is uniformly homeomorphic to the closed in X ′ uniform subspace ∆∩X ′, equipped by

the uniformity u′|∆∩X′ , which is uniformly realcompact (by Proposition 4.1). �

Theorem 4.3. Let uX be a uniform space, X be dense in a Tychonoff space Y , and v be a

uniformity on Y such that Zv ∧X = Zu, and every point of Y be a limit of a unique countably

centered zu−ultrafilter on uX. Then there exists a ℵ0−bounded uniformity vzω on Y such that

vzω|X = uzω

Proof. For any point x ∈ Y , px is a unique countably centered zu−ultrafilter on uX, converging

to the point x. Let Z ∈ Zu be an arbitrary member.

Lemma 4.2. In the conditions of Theorem 4.3, if Z ∈ Zu, then the set Z = {x ∈ Y : Z ∈ px} is

closed in Y and for any collection of u−closed sets {Zn}n∈N in uX

the equality ∩n∈NZn = ∩n∈NZn is fulfilled.

Proof. From Lemma 3.1, it follows that if x ∈ [Z]Y , then Z ∈ px and x ∈ Z, i.e. [Z]Y ⊆ Z. On

the other hand, Z ⊆ [Z]Y , which means Z = [Z]Y . It is clear, that ∩n∈NZn ⊆ ∩n∈NZn. Then
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x ∈ ∩n∈NZn, i.e. x ∈ Zn for all n ∈ N. Then Zn ∈ px for all n ∈ N and px is a countably centered

zu−ultrafilter on uX. Therefore ∩n∈NZn is u−closed and ∩n∈NZn ∈ px, i.e. x ∈ ∩n∈NZn. So,

∩n∈NZn ⊆ ∩n∈NZn. The lemma is proved. �

We continue the proof of Theorem 4.3.

Let α = {Ui}i∈N ∈ B∗
ω be an arbitrary countable u−open covering of the uniformity uzω

(Proposition 2.2).

Let ExY Ui = Y \X\Ui (i ∈ N). Then ExY Ui is open in Y and from the equality (ii) it follows,

that the family ExY α = {ExY Ui}i∈N is an open covering of Y . It is easy to check, that

the collection B̂∗
ω = {ExY α : α ∈ B∗

ω} of countable open coverings is a base of ℵ0−bounded

uniformity vzω. By the construction ExY α ∧X = α, hence, vzω|X = uzω. �

Corollary 4.3. In the conditions of Theorem 4.3, for the uniformity vzω we have Zvzω ∧X =

Zuz
ω
= Zu.

Proof. It follows from vzω|X = uzω and the item (3) of Lemma 2.1. �

Theorem 4.4. Let uX be a uniform space, X be dense in a Tychonoff space Y , and v be a

uniformity on Y such that Zv ∧X = Zu. The following statements are equivalent:

(1) Every coz−mapping f from uX into any uniformly realcompact uniform space νR has

a coz−extension to a coz−mapping f̂ from vY into νR.

(2) uX is Cu−embedded in vY .

(3) If a countable u−closed sets family in uX has empty intersection, then their closures in

vY have empty intersection.

(4) For any countable family of u−closed sets {Zn}n∈N in uX,

[∩n∈NZn]Y = ∩n∈N[Zn]Y .

(5) Every point of vY is the limit of a unique countably centered zu−ultrafilter on uX.

(6) X ⊂ Y ⊂ υuX.

(7) υvY = υuX.

Proof. (1) ⇒ (2) It is obvious, as uRR is uniformly realcompact.

(2) ⇒ (3) Let ∩n∈NZn = ∅ and Zn ∈ Zu, n ∈ N. For each n ∈ N, Zn = f−1
n (0), fn ∈ Cu(X).

Because uX is dense and Cu−embedded in vY , then the functions fn uniquely can be extended

to a functions f̂n ∈ Cv(Y ), n ∈ N. Evidently, [Zn] ⊆ f̂−1
n (0). We show that the family α̂ =

{Y \ f̂−1
n (0) : n ∈ N} is a covering of Y . Then the family α = {Y \ [Zn]n∈N}, a fortiori, will

be a covering of Y . Suppose, that y ∈ Y \ ∪α̂, i.e. y ∈ ∩n∈Nf̂
−1
n (0). Let py be a countably

centered zv−ultrafilter such that ∩py = {y}. Then f̂−1
n (0) ∈ py and py ∧ X is a countably

centered u−closed sets family. As X is dense in Y , py ∧X ̸= ∅. Let p be a countably centered

zu−ultrafilter containing py ∧ X. Then f̂−1
n (0) ∩ X = Zu ∈ p, n ∈ N and hence ∩n∈NZn ̸= ∅.

Contradiction. Otherwise, the family α is a covering of Y , therefore, ∩n∈N[Zn] = ∅.
(3) ⇒ (4) [∩n∈NZn]Y ⊆ ∩n∈N[Zn]Y is obvious. Conversely, let x ∈ ∩n∈N[Zn]Y . Then for any

v−closed neighborhood of x we have x ∈ [V ∩ Zn]Y , n ∈ N and x ∈ ∩n∈N[V ∩ Zn]Y . By (3) we

have ∩n∈N(V ∩ Zn) ̸= ∅, i.e. V ∩ (∩n∈NZn) ̸= ∅. So, x ∈ [∩n∈NZn], and (4) (∩n∈NZn) holds.

(4) ⇒ (5) It is obvious.

(5) ⇒ (1) Let x ∈ Y . Let px denote the unique countably centered zu−ultrafilter on uX

with limit x. As in Lemma 2.2, we write f ♯(px) = {E ∈ Zν : f−1(E) ∈ px}. This is a

countably centered prime zν−filter on the uniformly realcompact space νR. Then, by Corollary

2.2, f ♯(px) is contained in the unique countably centered zν−ultrafilter px. So, by Theorem

3.2.,f ♯(px) and px are converging to the same limit. Denote this limit by {y} = ∩px = f ♯(px).
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It means that determines a mapping f̃ from vY into νR. In case x ∈ X, we have {x} = ∩px,
so that y = f̃(x) = f(x) = ∩f ♯(px). Therefore f̃ agrees with f on X. As f−1(F ) ∈ Zu

for all F ∈ Zν , then for a mapping f̃ : Y → νR the equality f−1(F ) = f̃−1(F ) is fulfilled

for every F ∈ Zν , where f−1(F ) = {x ∈ Y : f−1(F ) ∈ px} (as in the proof of Theorem

3.6). Then for any countable ν−open covering β = {Ui}i∈N ∈ νzω of the uniformly realcom-

pact νR the covering f̂−1(β) = {f̂−1(Ui)}i∈N is open covering of Y , as, by the Theorem 4.3,

f̃−1(Ui) = Y \ f−1(R \ Ui) (i ∈ N) and f̃−1(β) ∈ vzω. Hence f̂ : vzωY → νR is uniformly con-

tinuous mapping. By Corollary 3.4, Zvzω ∧ X = Zuz
ω
= Zu. We note that f̃−1(F ) ∈ Zuz

ω
for

any F ∈ Zν . Evidently, f̃−1(F ) ∩ X = f−1(F ) ∩ X = f−1(F ) and f−1(F ) ∈ Zv ∧ X. Then

there exist v−closed sets Zn ∈ Zv (n ∈ N) such that Int(Zn) ̸= ∅ and f−1(F ) = ∩n∈N{Zn ∩X}.
We have f̃−1(F ) = f−1(F ) = ∩n∈N{Zn ∩X} = ∩n∈NZn (it follows from Theorem 4.3). Thus,

f̃−1(F ) is a v−closed set, i.e. the mapping f̃ : vY → νR is v−continuous.

(5) ⇒ (7) By Theorem 4.3, a completion ṽzωỸ of the space Y , with respect to the uniformity

vzω, coincides with the Wallman realcompactification υuX. From the items (1), (5) of Theorem

2.3 and item (8) of Theorem 2.4, it follows that each point of ṽzωỸ is the limit of a unique

countably centered zu−ultrafilter on uX, hence, by Corollary 4.3, each point of ṽzωỸ is the limit

of a unique countably centered zv−ultrafilter on vY . By the item (8) of Theorem 2.104, we have

ṽzωỸ = υvY = υuX.

(7) ⇒ (6) X ⊂ Y ⊂ υvY = υuX.

(6) ⇒ (2) The uniform space uX is Cu−embedded in the Wallman realcompactification υuX.

By the item (1) of Theorem 2.3, item (5) of Theorem 2.4, Theorem 4.3 and Corollary 3.2, it

follows that uX is Cu−embedded in the uniform space vY . �

Corollary 4.4. Let uX be a dense uniform subspace of a uniform space vY . The following

statements are equivalent:

(1) Every coz−mapping f from uX into any uniformly realcompact uniform space νR has

a coz−extension to a coz−mapping f̂ from vY into νR.

(2) uX is Cu−embedded in vY .

(3) If a countable u−closed sets family in uX has empty intersection, then their closures in

vY have empty intersection.

(4) For any countable family of u−closed sets {Zn}n∈N in uX,

[∩n∈NZn]Y = ∩n∈N[Zn]Y .

(5) Every point of vY is the limit of a unique countably centered zu−ultrafilter on uX.

(6) X ⊂ Y ⊂ υuX.

(7) υvY = υuX.

Proof. It immediately follows from Theorem 4.4, since u = v|X , hence Zv ∧X = Zu. �

Theorem 4.5. Every uniform space uX has the Wallman realcompactification υuX, con-

tained in a β−like compactification βuX with the next equivalent properties:

(I) Every coz−mapping f from uX into any uniformly realcompact space νR has a contin-

uous coz−extension f̃ from υuX into vY .

(II) uX is Cu−embedded in υuX.

(III) If a countable family of u−closed sets in uX has empty intersection, then their closures

in υuX have empty intersection.

(IV) For any countable family of u−closed sets {Zn}n∈N in uX,

∩n∈N[Zn]υuX = [∩n∈NZn]υuX .
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(V) Every point of υuX is the limit of a unique countably centered zu−ultrafilter.

The Wallman realcompactification υuX is unique in the following sense: if a uniform space

vY is a realcompactification of uX satisfies any one of listed conditions, then there exists a

coz−homeomorphism of υuX onto vY that leaves X pointwise fixed.

Proof. It is analogically to Theorem 3.8, for the case β−like compactification βuX. �
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