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ON C;— AND (C,— EMBEDDED UNIFORM SPACES
ASYLBEK CHEKEEV'?, BAKTIYAR RAKHMANKULOV!, AIGUL CHANBAEVA!

ABSTRACT. For a uniform space uX the concept of Cy-embedding (C;-embedding) in some
uniform space is introduced. An analogue of Urysohn’s Theorem is proved and it is established,
that uX is C;;—embedded in the Wallman S—like compactification 3,X, and any compactifi-
cation of uX in which uX is C;,—embedded, must be 8,X. A uniformly realcompact space is
determined. It is proved, that uX is C,—embedded in the Wallman realcompactification v, X,
and any uniform realcompactification in which uX is C, —embedded, is v, X.
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1. INTRODUCTION

Extensions of (bounded) continuous and (bounded) uniformly continuous functions from sub-
spaces of topological and uniform spaces to the whole space are the most important and actual
problems ([2, 8]). For topological spaces the concepts of C*-embeddings and C-embeddings of
their subspaces, introduced by C. Kohls [13, Notes, Chapter 1] and P. Urysohn, allowed one to
prove that to be a normal space is equivalent to that every closed subspace is C'(C*)—embedded
in it [13, Notes, Chapter 1], [10, 2.1.8]. M. Stone and E. Cech proved that a completely regular
space X is C*—embedded in its Stone-Cech compactification SX, and any compactification of X
in which X is C*—embedded must be 5X [13, Th. 6.5 (II)]. E. Hewitt proved that a completely
regular space X is C—embedded in its realcompactification v.X, and any realcompactification of
X in which X is C—embedded must be vX [13, Th. 8.7 (II)]. M. Katetov [18] proved that any
bounded uniformly continuous function on a uniform subspace can be extended on the whole
space.

In [8], for a uniform space uX the Wallman g—like compactification 5, X and the Wall-
man realcompactification v, X have been constructed and their uniformities described. Since
UuX)cC Cyu(X) CC(X) and U*(uX) C C!(uX) C C*(X), the concepts of Cy-embedding and
(Cr—)embedding of a uniform subspaces are naturally determined (Definition 3.2) and analogues
of Urysohn’s Theorem (Theorem 3.4) and Theorem on C,—embedding of a C}—embedded sub-
spaces are proved (Theorem 3.5). For the Wallman —like compactification 3, X of a uniform
space uX an analogue of Stone-Cech Theorem is proved: a uniform space uX is C —embedded
in the Wallman S—like compactification £, X and any compactification of uX, in which uX
is C'—embedded must be 3, X (Theorem 3.7, Corollary 3.5, Theorem 3.8). It is also proved
that a unform subspace u'S of the uniform space uX is C}—embedded in uX if and only if
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[S]g.x = BuwS (Proposition 3.3). An example of a uniform space uX which is C; —embedded,
but is not C*—embedded in (3, X is given (Remark 3.2).

The concept of uniformly realcompact uniform space is introduced (Definition 4.2), of its
some properties are studied and the example of a uniform space uX which is C,—embedded,
but is not C'—embedded in the Wallman realcompactification v, X is provided (Theorem 4.1,
Corollary 4.1, Theorem 4.2, Corollary 4.2, Propositions 4.1 and 4.2, Corollaries 4.2 and 4.3). For
a realcompactification v, X of a uniform space uX an analogue of Hewitt Theorem is proved: uX
is C,—embedded in its Wallman realcompactification v, X, and any uniform realcompactification
in which uX is C,—embedded is v, X (Theorem 4.4, Corollary 4.4, Theorem 4.5).

2. NOTATION AND PRELIMINARIES

All notations and properties of uniform spaces are taken from books [17, 3, 10], a normal
bases properties from [11] and constructions using them from books [1, 15, 20], properties of the
Stone-Cech compatification and its interrelation with rings of functions from books [13, 23].

For a uniform space uX, where u is the uniformity in terms of uniform coverings, we denote
by U(uX) (U*(uX)) the set of all (bounded) uniformly continuous functions on uX. Z, =
{f710) : f € U(uX)} and, evidently, Z, = {g71(0) : g € U*(uX)}. We note that U*(uX) is a
commutative ring with unit, whereas U(uX), in general, is not so. All sets of Z, are said to be
u—closed [5, 6] and all sets of CZ, = {X\Z : Z € Z,} are said to be u—open [3]. When u = uy
is the fine uniformity on a Tychonoff space X, then U(uyX) = C(X)(U*(usX) = C*(X)) is the
set of all (bounded) continuous functions [13, 10]. Z,, = Z(X) is a family of all zero-sets, and
CZ,;, = CZ(X) is a family of all cozero-sets [13]. A family (covering) a consisting of u—open
sets (cozero-sets) is said to be an u—open (a cozero) covering.

Z, is the base of closed sets topology, forms separating, nest-generated intersection ring on
X [21], and hence it is a normal base [11, 15].

Definition 2.1. A mapping f : uX — vY between uniform spaces is said to be a coz—mapping,
if f~1(CZ2,) C 02, (or f7Y(2Z,) C Z,) [5, 6, 12]. A mapping f : uX — Y from a uniform
space uX into a Tychonoff space Y is said to be z,—continuous, if f~1{(CZ(X)) C CZ, (or
FTHEW)) € 24) [9].

Evidently, every uniformly continuous mapping is a coz—mapping, while the converse, gen-
erally speaking, is not true [5, 6, 7]. Also, every z,—continuous mapping f : uX — Y is a
coz—mapping of f : uX — vY for any uniformity v on Y. If Y is a Lindelof space or (Y, p)
is a metric space, then its coz—mapping is a z,—continuous (for example, [5, 6]). If Y = R
or Y = I, then the coz—mapping f : uX — R is said to be a u—continuous function and the
coz—mapping f : uX — I is said to be a u—function [5, 6].

We denote by C,(X) (C(X)) the set of all (bounded) u—continuous functions on the uniform
space uX and by Z(uX) the ring of zero-sets functions from C,(X) or C;(X) and CZ(uX)

consists of complements of sets of Z(uX) and, vice versa.

The topology of a uniform space is generated by its uniformity, and in case of a compactum
X we always use its unique uniformity. The restriction of a uniformity from a uniform space
vY to its subspace X is denoted v|x and the restriction of a function f from Y into R to a
subset X C Y is denoted f|x. A uniform space uX which has a base of uniform coverings of
cardinality < 7 is said to be T—bounded [3, 4].

We denote the set of all natural numbers by N, R is the real line, uniformity ug on R is
induced by the ordinary metric; I = [0, 1] is a unit interval; for X C Y and a family of subsets
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§FinY we denote X AF={X NF:F g} and by [X]y the closure of X in Y. For families of
subsets § and §’ we denote FAF ={FNF :FeF F €F}.

A filter F is called countably centered if NyenF,, # () for any countable subfamily {F), },en of
the filter F.

The natural uniformity on uX, generated by U (uX) (U* (uX)), the uc(up) is the smallest
uniformity on X with respect to all its functions from U (uX) (U* (uX)) which are uniformly
continuous. Evidently, u, C u. C u, € u, where a base of uniformity wu, is formed by all
countable uniform coverings of u. The Samuel compactification s, X is a completion of X with
respect to the uniformity u,.

Proposition 2.1. [8] The set B, (B) of all finite countable u—open coverings of a uniform
space uX is the base of uniformity u;(uZ,). Moreover u, C us, up, C ue C uy, C uf,.

Proposition 2.2. [8] C,(X) forms a complete subring of C'(X) with the inversion. It
contains constant functions, separates points and closed sets, is uniformly closed and is closed
under inversion, i.e. if f € C,(X) and f(z) # 0 for all z € X then 1/f € C,(X) (an algebra in
sense of [14, 16]).

Lemma 2.1. [§]

(1) coz—mapping f : uX — vY into a compact space vY is a uniformly continuous mapping
[ iupX = oY

(1) coz—mapping f : uX — vY into Xp—bounded uniform space vY is a uniformly continu-
ous mapping f : uZX — vY;

(2) U(uX) = U(ucX) = U(uuX) C U(uiX) = Cu(X);

(27) UupX) = U*(uX) C U(upX) = Ur(uz X) = CL(X) C Cu(X);

(B) Zu=2u, = 2y, = 2y, = uz = Zuz, = Z(uX).

(4) Cy(X) is a complete ring of functions with inversion on X.

Let w(X, Z,) be the Wallman compactification of X with respect to the normal base Z,, [11
1, 15].

Theorem 2.1. [8] For a uniform space uX the following compactifications of X coincide:

(1) The completion of X with respect to us.
(2) The Wallman compactification w(X, Z,) of X with respect to the normal base Z,.
(3) The compactification which is the set of all maximal ideals of C};(X) equipped with the
Stone topology [22].
We note that w(X, Z,) is a f—like compactification of X [19], and we put 8, X = w(X, Z,)
Corollary 2.1. [§]

I. Every coz—mapping f : uX — vY can be extended to the continuous mapping
Buf : BuX = BoY [1, 13]

I1. The first axiom of countability does not hold in any point =z € 3, X \ X [21].

ITI. For uniform spaces uX and ' X we have 8, X = 8, X if and only if Z, = Z,, [21].
Theorem 2.2. [8] For a uniform space uX the following conditions are equivalent:

(1) The Samuel compactification s, X of uX is a f—like compactification of X;

(2) up =u;,
(3) any coz— mappmg f:uX — K into a compactum K can be extended to s,X;
(4) any u—function f:uX — I into I can be extended to s,X;
(5) if Z1,Z, € Z, and Z1 N Zy = (Z) then [Zl]qu N [ZQ]qu (Z)
(6) [Zi]sux N[ Z2]sux = [Z1 N Z2]s, x is fulfilled for any Z;, Zy € Z,;
(7) every point of s, X is the limit point for a unique z, —ultrafilter on uX;
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(8) every z,—ultrafilter is a Cauchy filter with respect to w,.

Definition 2.2 [21]. The Wallman realcompactification of a uniform space uX is the subspace
v(X, Z,) = v, X C ,X consisting of the set of all countably centered z,—ultrafilteres on Z,.
Theorem 2.3. [8] For a uniform space uX the following realcompactifications of X coincide:

(1) the completion of X with respect to uZ;

Let X be some realcompactification of X, u? be a uniformity on X" whose base consists of
all countable cozero-sets coverings, u; be the smallest uniformity on X" in which all functions
from C(XV) are uniformly continuous [10, 8.19, 8.1.D, 8.1.1, 8.3.19, 8.3.F], Z(C(X")) be the
ring of zero-sets of functions from C(X") and Zxv = X A Z(C(X"Y)).

Theorem 2.4. [8] For a realcompactification X of X the following conditions are equivalent:

(1) XV is the completion of X with respect to u, = ul)|x;

(2) XV is the weak completion g, Xof X with respect to u. = u?|x;

(3) XV is the Wallman realcompactification v, (X, Zxv) of X with respect to Zxwv;

(4) any z,,,—continuous mapping f : u,X — Y into a realcompact space Y has z, —continuous
extension to XY;

(5) any 2, —continuous function f : u, X — R has z,; —continuous extension to X";

(6) for any {Z;}ien C Zx,, such that NienZ; = 0 it follows Nien[Zi]xv = 0;

(7) Nien|Zilxv = [NienZi]xv is fulfilled for any {Z;}ien C Zx,;

(8) each point in XV is the limit of a unique countably centered z,  —ultrafilter on X.

For the interrelations of u—closed set filters with the ideals of rings C,,(X)(C: (X)) by analogy
with Chapter 2 of [13] we introduce the next notions.

Definition 2.3. A nonempty subfamily F of Z, is said to be a z,—filter on uX provided
that (i) 0 ¢ F; (i) if Z1,Z2 € F, then ZiNZy € F; (i) it Z € F, Z' € Z, and Z C Z', then
Z' e F.

A natural mapping Z : C,(X) — Z,, where for any f € Cy(X), Z(f) ={z € X : f(z) =
0} = f71(0) € Z,, is determined.

Theorem 2.5. If I is an ideal of the ring Cy,(X), then the family Z(I) = {Z(f) : f € I} is
a z,—filter on uX, and, vice versa, if F is a z,—filter on uX, then the family Z~1(F) = {f
Z(f) € F}is an ideal in Cy(X).

Proof. 1t is similar to [13, Th. 2.3]. O

By a z,—ultrafilter on uX is meant a maximal z,—filter, i.e. one not contained in any other
2z, —filters.

Theorem 2.6. If [ is a maximal ideal of the ring C,(X), then Z(I) is a z,—ultrafilter on
uX and if p is a z,—ultrafilter on uX, then Z~!(p) is a maximal ideal in C,(X). The mapping
Z:C,(X) — Z, is one-to-one from the set of all maximal ideals in C,(X) onto the set of all
zy—ultrafilters
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Proof. 1t is analogically to [13, Th. 2.5]. O

Theorem 2.7.
(a) Let I be a maximal ideal in the ring Cy,(X). If Z(f) meets every member of Z(I), then

fel.
(b) Let p be a z,—ultrafilter on uX. If an u—closed set Z meets every member of p, then
Z € p.
Proof. The proof is similar to that of [13, Th. 2.6]. O

Theorem 2.8. Let I be an ideal in C,,(X) such that if Z(f) € Z(I), then it implies f € I.
Then the next statements are equivalent:

(1) I is prime.

(2) I contains a prime ideal.

(3) For all g,h € Cy(X), if gh =0, then g€ I or h € I.

(4) For every f € C,(X) there is an u—closed set Z(f) on which f does not change sign.

Proof. Analogically to [13, Th. 2.9]. O
Theorem 2.9. Every prime ideal in C,(X) is contained in a unique maximal ideal.
Proof. Similarly to [13, Th. 2.11]. O

Definition 2.4. Let F be a z,—filter. If Z1, Zs € Z,, and from Z; U Zy € F it follows that
either Z; € F or Zy € F, then F is said to be a prime z,—filter.
Theorem 2.9.

(a) If I is a prime ideal in Cy(X), then Z(I) is a prime z,—filter.
(b) If F is a prime z,—filter, then Z~1(F) is a prime z,—ideal.
Proof. Tt is analogically to [13, Th. 2.12]. O
Corollary 2.2. Every prime z,— filter is contained in a unique z,—ultrafilter.

Proof. 1t immediately follows from the Theorems 2.6 and 2.9. (|

Definition 2.4. Let I be any ideal in C,,(X) (or C}(X)). If NZ(I) # 0, then I is said to be
a fized ideal; otherwise, I is said to be a free ideal.
Theorem 2.10. The following statements are equivalent:
(1) uX is a compact uniform space.
(2) Every ideal in Cy(X) is fixed, i.e. every z,—filter is fixed
(2’) Every ideal in C}(X) is fixed.
(3) Every maximal ideal in C,(X) is fixed, i.e. every z,—ultrafilter is fixed
(3’) Every maximal ideal in C}(X) is fixed.

Proof. 1t is analogically to [13, Th. 4.11]. O

Lemma 2.2. Let f:uX — vY be a coz— mapping and let F be a prime z,—filter on u.X.
Then f*(F)={Z € Z,: f~1(Z) € F} is a prime z,—filter on vY.

Proof. Tt is analogically to [13, Th. 4.12]. O
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3. Cy— EMBEDDING IN — LIKE COMPACTIFICATIONS

Definition 3.1. Two subsets A and B of uX are said to be u—separated in uX if there exists
a u—function f :uX — I such that f(x) =0 for all z € A and f(x) =1 for all z € B.

Remark 3.1. If 71,75 € Z, on uX and Z1NZy = (), then the function f(x) = g1(z)/(g1(x)+
g2()) is a u—function [5, 6], where g; : uX — I are uniformly continuous functions, Z; = g; *(0),
(1 =1,2) and f(Z1) = {0}, f(Z2) = {1}. Any segment [—r,7] is uniformly homeomorphic to I.
Let h : I — [—r,r] be a uniform homeomorphism such that h(0) = {—r}, h(1) = {r}. Then the
function F : uX — [—r,r], where F' = ho f, is u—continuous and F(Z;) = {—r}, F(Z3) = {r}.

Theorem 3.1. Two sets in uX are u— separated if and only if they are contained in disjoint
u— closed sets. Moreover, u—separated sets have disjoint u—closed neighborhoods.

Proof. Let A and B be u—separated in uX. Then there exists u—function f : uX — I such
that f(z) =0 for all x € A and f(x) =1 for all z € B. The sets Z; = {z : f(z) < 1/3} and
Zy ={x: f(x) > 2/3} are u—closed neighborhoods of A and B, respectively, and Z; N Zy = {).

Conversely, if A C Zy, B C Zy, Z; € Z,,1 = 1,2, and Z; N Zy = (), then, according to Remark
3.2, there exists a u— function f : uX — I such that f(x) = 0 for all z € Z; and f(z) =1 for
all x € Z5. Hence A and B are u—separated in uX. O

Corollary 3.1. If A and B are u— separated in uX, then there exist u—closed sets F' and
Z such that ACX\ZCFCX\B.

Proof. Let f : uX — I be a u—function such that f(x) =0 for all x € A and f(z) = 1 for all
ze€B. Put F={x: f(x) <1/3} and Z = {x: f(x) > 1/3}. Then F and Z are u—closed sets
and it is easy to check, that the condition of this corollary is fulfilled. O

Corollary 3.2. Every neighborhood of a point in a uniform space uX contains a u—closed-
neighborhood of the point.

Proof. Let x € X be an arbitrary point and x € O be an arbitrary open neighborhood of the
point . Then z ¢ F = X \ O and F is a closed set in X. Hence, there exists a uniformly
continuous function f : uX — I such that f(x) =0 and f(z) =1 [3, 10, 17]. Every uniformly
continuous function is u—continuous, hence, x and F' are u—separated and the remaining follows
from Corollary 3.4. O

Let uX be a uniform space. A point z € X is said to be a cluster point of a z,— filter F if
every neighborhood of x meets every member of F. The z,—filter F is said to converge to the
limit x if every neighborhood of = contains a member of F.

Proposition 3.1. A z,—filter F converges to z if and only if F contains the z,—filter of
all u—closed-neighborhoods of z. If x is a cluster point of a z,—filter F, then at least one
zy—ultrafilter containing F converges to x.

Proof. 1t is analogically to [13, Th.3.16]. O
Theorem 3.2. Let uX be a uniform space, x € X and let F be a prime z,—filter on u.X.

The following conditions are equivalent:

(1) x is a cluster point of F.
(2) F converges to x.
(3) NF ={z}.

Proof. Tt is analogically to [13, Th.3.17]. O
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Theorem 3.3. Let p, be a family of all u—closed sets containing a given point x of a uniform
space uX. Then

(a) x is a cluster point of a z,—filter F if and only if F C p,.

(b) pg is the unique z,—ultrafilter converging to x.

(c) Distinct z,—ultrafilters cannot have a common cluster point.

(d) If F is a z,—filter converging to x, then p, is the unique z,—ultrafilter containing F.

Proof. Tt immediately follows from 3.5, 3.6, 3.7. ]

Definition 3.2. Let X be a subspace of a Tychonoff space Y and u be a uniformity on
X, v be a uniformity on Y such that Z, A X = Z,. The uniform space uX is said to be
C(C})—embedded in the uniform space vY, if any function of Cy,(X) (C} (X)) can be extended
to a function in C,(Y) (C}(Y)).

Theorem 3.4. (Urysohn’s Extension Theorem) Let X be a subspace of a Tychonoff space
Y, u be a uniformity on X and v be a uniformity on Y such that Z, A X = Z,. Then uX is
Cr—embedded in vY if and only if any two u—separated sets in X are v—separated in Y.

Proof. Necessity. If A and B are u—separated sets in uX, there exists a function f in C}(X)
that is equal to 0 on A and 1 on B. By hypothesis, f has an extension to a function ¢ in C;(Y").
Since g is 0 on A and 1 on B, these sets are u—separated sets in vY'.

Sufficiency. Let fi be a given function in C}(X). Then |fi| < m for some m € N. Define
rn = (m/2)(2/3)", n € N. Then |fi| < m = 3r;. Inductively, given f,, € C;(X) with |f,| < 3r,,
define A, = {x € X : fo(z) < —rp} and B, = {zv € X : fu(x) > r,}. Then A, and B, are
u—closed sets in uX and A, N B, = (. Then, by Remark 3.1, A, and B,, are u—separated in
uX. Accordingly, there exists a function g, in C(Y) equal to —r, on A, and 2r,, on B, with
|gn| < 7. The values of f,, and g, on A, lie between —3r,, and —r,; on B, they lie between
rn and 3r,; and elsewhere on X they are between —r,, and r,. Let f,11 = fn — gn|x and we
have |fni1| < 21, ie. | fn+1]| < 3rpp1. This completes the induction step.

Now put g(z) = E,engn(z),x € X. Since the series ¥,cnry, converges uniformly and since
|gn| < 7y, for alln € N, it follows that ¥,,engn (z) converges uniformly and, by Proposition 2.3, g is
a bounded v—continuous function, i.e. g € C(Y). For every n € N we have (g1+g2+...4+9gn)|x =
(fi—=fo)+(fo—f3)+ .o+ (fn— fror1), ie. (g1+92+...4+3n)|lx = f1 — fnt+1. Since the sequence
{fn+1(x) : n € N} approaches 0 at every x of X, this shows that g(z) = fi(x) for all z € X.
Thus, g is a v—continuous extension of fi. O

Corollary 3.2. Let uX be a uniform subspace of vY. Then uX is C;—embedded in vY if
and only if any two u—separated sets in X are v—separated in Y.

Proof. Tt immediately follows from Theorem 3.5, since u = v|x, hence Z, A X = Z,. O

Corollary 3.3. Let X be a subspace of a Tychonoff space Y, S be a subspace of X, u be a
uniformity on X, v a uniformity on Y and w a uniformity on S such that Z,, = Z, A S both
Z,=2,NX and uX is C,— (C}—)embedded in vY. Then wS is C,- (C})—embedded in vY
if and only if wS is Cy,— (C})—embedded in uX.

Proof. Let wS be Cy(C))—embedded in vY, ie. any w—continuous (bounded) function
f € Cu(X)(Ci(X)) can be extended to v—continuous function g € C,(Y) (CH(Y)). It is
correctly, as Z,, = Z, A X. Evidently, h : g|x € Cyu(X) (C(X)) and h is a u—continuous
(bounded) extension of the function f. The converse statement is obvious. O
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Theorem 2.4. A C}—embedded subset is C;,—embedded if and only if it is u—separated
from every u—closed set disjoint from it.

Proof. Let uX be C—embedded in vY. Let Z(h) = h=1(0) be v—closed in Y and Z(h) N X =
(). Then h(x) # 0 for all x € X. Then, by Proposition 2.2, the function f(x) = 1/h(z) is
u—continuous for all x € X, i.e. f € Cyu(X). Let g be a u—continuous extension of f on X.
Then g - h belongs to C,(Y) (Proposition 2.2) and equals to 1 on X and 0 on Z(h).
Conversely, let f € Cy(X) be an arbitrary function. Then arctgo f : uX — (—7/2;7/2) is
a u—continuous bounded function on uX, i.e. arctgo f € C¥(X). Let g be a v—continuous
extension of arctgo f, ie. g € Cp(Y). Aset Z ={x € Y : |g(x)] > w/2} is v—closed and
Z N X = (. By the condition there exists a function h € C,(Y") which is equal to 1 on X and 0
on Z, |h| < 1. A function g - h is v—continuous, by Proposition 2.3, and g - h|x = arctgo f and
|(g-h)(z)] <m/2forall x € Y. Thus, tgo (g-h) is a v—continuous extension of f on Y. O

Definition 3.3. Let uX be a uniform space, and X dense in a Tychonoff space Y. A point
x €Y is a cluster point of z,—filter F on uX, if every neighborhood of point z in Y meets every
member of F, and z is a cluster point of F provided that p € N{[Z]y : Z € F}.
We will say, that z,—filter F converges to a limit x, if every neighborhood of point x in Y
contains a member of F.

Lemma 3.1. Let uX be a uniform space, X be dense in a Tychonoff space Y and v be a
uniformity on Y such that Z, A X = Z,. If Z is a u—closed set in uX and x € [Z]y, then at
least one z,—ultrafilter on uX contains Z and converges to x.

Proof. Let F be a z,—filter on vY of all v—closed-set-neighborhoods of x and ' = F A X.
Since = € [Z]y, FFU{Z} C Z, has the finite intersection property, and so is contained in a
zy—ultrafilter p,. Clearly p, converges to x. O

Corollary 3.3. Under conditions of Lemma 3.1, every point in Y is the limit of at least one
zy—ultrafilter on u.X.

Proof. Tt immediately follows from Lemma 3.1 under Z = X. O

Theorem 3.6. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a
uniformity on Y such that Z, A X = Z,, and every point of Y be a limit of unique z,—ultrafilter
on uX. Then on a Y there exists a precompact uniformity v; such that v;] X = Uy
Proof. For any point x € Y, p, is a unique z,—ultrafilter on uX, converging to z. Let Z € Z,
be an arbitrary member. Put Z ={z €Y : Z € p, }.

Lemma 3.2. Under conditions of Theorem 3.6, if Z € Z,, then theset Z = {x €Y : Z € p,}

is closed in Y and for any Z, € Z, (n =1,2)(i) Z1 U Zo = Z1 U Zy and (i1)Z1 N Zy = Z1 N Z3.

Proof. Evidently that Z C Z. From Lemma 3.1 it follows, that if z € [Z]y, then Z € p, and
x € Z. Hence Z = [Z]y. The inclusion Z; U Zy C Z; U Zs is obvious. Let € Z; U Z3. Then
Z1U Zy € p, and p, is a z,—ultrafilter on uX, converging to the point x. Since p, is a prime
zu—filter, then either Z; € p,, or Z € p,. So, either & € Z1, or x € Zy, ie. Z1UZy C Z1 U Zy
and the item (i) is fulfilled.

For the item (ii) the inclusion Z1; N Zy C Z1 N Zy is obvious. Let x € Z1 N Z3. Then Z; € py,
Zy € p, and p, is a z,—ultrafilter on uX, converging to the point z. So, Z1 N Zs € p, and
x € Z1 N Zy. The item (ii) is fulfilled. Lemma is proved. O
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We continue the proof of Theorem 3.6.

Let a = {U; : i = 1,...,n} € B, be an arbitrary finite u—open covering of the uniformity u;
(Proposition 2.1). Let ExyU; = Y\X\U; (i = 1,...,n). Then ExyU; is open in Y and from the
equality (ii) it follows that the family Frya = {EzyU; : i = 1,...,n} is an open covering of Y.
It is easy to prove, that the finite open covering B; = {Erya:«a € By} is a base of precompact

uniformity v;. By the construction Ezya A X = a, hence vj|x = u; ]

Corollary 3.4. In the conditions of Theorem 3.6, for the uniformity v; we have Zyz NX =
Zy = 2.
D

Proof. Tt follows from v;|x = u; and the item (3) of Lemma 2.4. O

Theorem 3.7. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a
uniformity on Y such that Z, A X = Z,. The following statements are equivalent:

(1) Every coz—mapping f from uX into any compact uniform space vK has an extension
to a coz—mapping f from vY into v K.

(2) uX is C}—embedded in vY.

(3) Any two disjoint u—closed sets in uX have disjoint closures in vY'.

(4) For any two u—closed sets Z; and Zs in uX,

(21N Zoly = [Z1]y N [Za]y -
(5) Every point of Y is the limit of a unique z,—ultrafilter on uX.
(6) X CY C BuX.
(7) BuY = BuX.

Proof. (1) = (2). A u—continuous function f in C}(X) is a coz—mapping into the compact
subsets K = [f(z)]r of R with respect to the uniformity v = ugr|x. Hence, item (2) is fulfilled.

(2) = (3). It follows from Theorem 3.4.

(3) = (4). If x € [Z1]y N[Z2]y, then for every u—closed-set-neighborhood V of z in Y we have
WS [VﬂZl]y and x € [VOZQ]y. By (3), it implies VNZ1NVNZy #£ 0,ie. VNZiNZ #+ 0.
Therefore x € [Z1 N Z3]. Thus [Z1]y N [Z2]y is contained in [Z; N Z3]y. The reverse inclusion is
obvious.

(4) = (5). By Lemma 3.1, each point of Y is the limit of at least one z,—ultrafilter. Distinct
zy,—ultrafilters contain disjoint u—closed sets (Theorem 3.2 (c)) and by (4) it implies that a
point x cannot belong to the closures of both these u—closed sets. Hence, the two distinct
zy—ultrafilters cannot both converge to x.

(5) = (1). Given z € Y, let p, denote the unique z, —ultrafilter on uX with the limit . Asin
Lemma 2.2, we write f*(p,) = {F € 2, : f~Y(E) € p,}. This is a prime z,—filter on a compact
uniform space vK, and so it has a cluster point. Therefore, by Theorem 3.2, f#(p,) has a limit in
vK. Denote this limit by {y} = N{f(F)}. It means that it is determined a mapping f from vY
into vK. In case 2 € X, we have {z} = Np,, so that y = f(z) = f(z) = Nf¥(p,). Therefore f
agrees with f on X. As f~Y(F) € 2, for all v—closed sets F' € Z,, then for a mapping f Y —
vK the equality f=1(F) = f~1(F) holds for all F € Z,,, where f~1(F) = {z € Y : f"1(F) € p,}
(as in the proof of Theorem 3.6). Then for any finite cozero-covering f ={V;:i=1,2,...,n} € v

of the compact K, the covering f~1(8) = {f~1(V;) : i = 1,2,...,n} is an open covering of Y,
as, by Theorem 3.6, f~2(V;) = Y \ f~H(K\V;) (i = 1,2,...,n) and f~1(B) € v,. Hence
f:v;Y = vK is a uniformly continuous mapping. By Corollary 3.4, Zyz NX =24z = Z,. We
note that f~1(F) € 2, for any F € Z,. Evidently, f"{(F)NX = f~{(F)NX = f~}(F) and

f~YF) € Z, A X. Then there exist v—closed sets Z, € Z, (n € N) such that Int(Z,) # () and
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FUF) = Npen{Zn N X}. We have f~Y(F) = f~1(F) = Npen{Zn N X} = NpenZn (it follows
from the proof of Theorem 3.6). Thus, f‘l(F) is v—closed set, i.e. the mapping f Y = vK
is v—continuous.

(5) = (7). By Theorem 3.6, a completion of Y, with respect to the uniformity v;, is the
Samuel compactification SpzY of the uniform space v;Y and v;|x = u;. Since X is dense
in Y, then s,:Y = 3,X. From (7) of Theorem 2.2 and (5) it follows that each point of the
compactification s,:Y" is the limit of a unique z,—ultrafilter on uX, hence by Corollary 3.4,
each point of s,zY" is the limit of a unique z,—ultrafilter on vY". So, by (7) of Theorem 2.2, we
have svéY =Y = B, X.

(7)=(6). X CY C B,Y = B.X.

(6) = (2). The uniform space uX is C;—embedded in the compactification 5,X. By (1)
of Theorem 2.1, (2) of Theorem 2.2, Theorem 3.6 and Corollary 3.2, it follows, that uX is
C,—embedded in the uniform space vY'. O

Corollary 3.5. Let uX be a dense uniform subspace of the uniform space vY. The following
statements are equivalent:

(1) Every coz—mapping f from uX into any compact uniform space vK has an extension
to a coz—mapping f from vY into v K.

(2) uX is C—embedded in vY.

(3) Any two disjoint u—closed sets in uX have disjoint closures in vY'.

(4) For any two u—closed sets Z; and Zs in uX,

(21N Zoly = [Z1]y N [Za]y -
(5) Every point of Y is the limit of a unique z,—ultrafilter on u.X.
(6) X CY C Bu,X.
(7> 5UY = /BuX

Proof. Tt immediately follows from Theorem 3.7, since u = v|x, hence Z, A X = Z,,. [l

Theorem 3.8. Every uniform space uX has a f—like compactification 8, X with the next
equivalent properties:

(I) Every coz—mapping f from uX into any compact space K has a continuous extension
Buf from B, X into K.
uX is Cy—embedded in 5, X.
(II) uX is C}; bedded in £, X
(III) Any two disjoint u—closed sets in uX have disjoint closures in 3, X.
or any two u—closed sets Z; an 2 1n uX,
IV) F losed Zyp and Z3 in uX

(210 Zsg,x = [Z1]p.x N [Z2]p.x -
(V) Distinct z,—ultrafilters on uX have distinct limits in 8, X.

The compactification B, X is unique in the following sense: if a compactification Y of uX
satisfies any of listed conditions, then there exists a homeomorphism of 5, X onto Y that leaves
X pointwise fixed.

Proof. By Theorem 3.7, if a compactification Y satisfies any of (I) - (IV), it satisfies all of them.
By (I), the identity mapping on uX (which is a coz—mapping into the compact uniform space
vY) has a S—like extension from [,X into vY’; similarly, it has an extension from vY into
BuX (by Corollary 2.1). It follows that these extensions are homeomorphisms onto [10, 2.1.9,
3.5.4]. O

Proposition 3.2. The next statements are equivalent:
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(a) In a uniform space uX any two disjoint closed sets, one of which is compact, are
u—separated.

(b) In a uniform space uX every Gs—set containing a compact set K, contains a u—closed
set containing K.

(¢) Every compact uniform subspace vK of a uniform space uX is C,—embedded.

Proof. (a) Let F and F’ be disjoint closed sets in uX with F' is compact. For each 2 € F, choose
disjoint u—closed sets Z, and Z., with Z, is a u—closed-sets-neighborhood of = and Z/ O F”.
The covering {Z, : € F'} of the compact set F' has a finite subcovering {Z,,, ..., Z;, }. Then F
and F’ are contained in the disjoint u—closed sets Z,, U...UZ,, and Z, N...NZ,, , respectively.
Hence, by Theorem 3.1, F and F’ are u—separated.

(b) A Gs—set G has the form N,enU,, where each U, is open in uX. If G D K, then K
is u—separated from X\U,, by item (a), and so, by Corollary 3.1, there is a u—closed set F),
satisfying K C F,, C U,. Then K C NpenFr C G and NyenFr, as a countable intersection of
u—closed sets is a u—closed set.

(c) Let vK be a compact uniform subspace of a uniform space uX. If F and F’ are
v—separated in vK, then F and F’ have disjoint closures in K. As these closures are com-
pact, they are, by (a), u—separated in uX. By Theorem 3.4, compact vK is C};—embedded in
uX. By (b), the compact set K is u—separated from every u—closed set disjoint from it. Hence
the compact uniform subspace vK is C,—embedded in u.X. O

Proposition 3.3. Let u/S be a uniform subspace of uX. Then
(a) u'S is C¥,—embedded in uX if and only if it is C;', —embedded in 3,X.
(b) «'S is C,—embedded in vX if and only if [S]g,x = BuS.

Proof. (a) It is obvious.

(b) By (c) of Proposition 3.2, the compact uniform subspace K = [S]g,x of the compactum
BuX is C—embedded in 8, X, where v is a uniformity on K, induced by the unique uniformity
of the compactification 8, X. So, the conditions of (b) hold if and only if the uniform space u'S
is C,—embedded in /S and the compactum K = [S]g, x satisfies (2) of Theorem 3.7 and is a
compactification of 'S, in which «'S is C?,—embedded. O

Remark 3.2. In [8] there is an example of a uniform space uX such that 8, X # X. Then
uX is C;—embedded, but it is not C*—embedded in the compactification 3,X, because if uX
is C*—embedded in 5,X, then 5,X = 8X. A contradiction.

4. C,— EMBEDDING IN REALCOMPACTIFICATIONS

Definition 4.1. [12] A mapping f : uX — vY is said to be a coz—homeomorphism, if f is
a coz— mapping of uX onto vY in a one-to-one way, and the inverse mapping f~!: vY — uX
is a coz—mapping. A two uniform spaces uX and vYare coz—homeomorphic if there exists a
coz— homeomorphism of uX onto vY.

Definition 4.2. A uniform space uX is said to be uniformly realcompact if it is coz—homeomorphic
to a closed uniform subspace of a power of R.

Remark 4.1. By analogue with [13], an ideal I C C,(X) is said to be a fized, if NZ(I) =
N{Z(f): fel} #0,and if Z(I) is a countably centered z,—ultrafilter, then a maximal ideal I
is said to be a real ideal.

Theorem 4.1. For uniform space uX the following conditions are equivalent:

(1) uX is uniformly realcompact;
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(2) X is complete with respect to the uniformity u?,
(3) uX = v, X;

(4) each countably centered z,—ultrafilter is convergent;

(5) each point in X is the limit of a unique countably centered z,—ultrafilter on uX.
(6) every real maximal ideal in C,(X) is fixed.

Proof. (1) = (2) Let ¢ : uX — R” be a coz—homeomorphism of the uniform space uX onto
a closed uniform subspace X’ = i(X) C R™ with the uniformity v’ = ugl;(x), where R (ug)
is a power of R(ur). The uniform space ufR” is Rg—bounded and complete [3], hence u/X’
is also Ng—bounded and complete [3]. Then X' is complete with respect to the uniformity w/?
(Proposition 2.1). From (1) of Lemma 2.1 it follows that the uniform spaces u?X and u/? X’
are uniformly homeomorphic, so X is complete with respect to the uniformity u? (Proposition

(2) < (3) It follows from items (1), (2) of Theorem 2.3.
(3) & (4) & (5). It follows from items (1), (8) of Theorem 2.4.
(5) < (6). It is obvious (Remark 4.1).

(2) = (1). Let |Cy(X)| = 7. By Lemma 2.1 (2), Cy(X) = U(u?X), hence the uniform
space u’, X is uniformly homeomorphically embedded into R”, i.e. the uniform space uX is
coz—homeomorphically embedded into R”. From (2) it follows that uX is coz—homeomorphic
to a closed uniform subspace of upR". O

Lemma 4.1. [21] If p C Z(X) is a filter closed under countable intersections and Np = 0,
then on a Tychonoff space X there exists a closed set base, which is separating, nest-generated
intersection ring and there exists a uniformity u such, that p € v, X.

Proof. [21, Lemma 3.5]. Weput F ={Z € Z(X): Ze€por ZNP =0 for some P € p}. Then
F is separating, nest-generated intersection ring and the Wallman compactification w(X, F) is
a —like [21] compactification. All countable coverings from the family CF = {X\Z : Z € F}
are the uniformity u on X. Therefore w(X,F) = £, X, v(X,F) = v,X and p is a free countably
centered z,—ultrafilter on the uniform space uX, i.e. p € v, X. O

Corollary 4.1. If X is a realcompact and non-Lindel6f space, then there exists a uniformity
u on X such that uX is not uniformly realcompact. The uniform space uX is C,—embedded,
but it is not C'—embedded in v, X.

Proof. If X is realcompact and non-Lindel6f, then there is a filter p C Z(X), which is closed
under countable intersections, and Np = () [10, 3.8.3]. By Lemma 4.1, on X there exists a
uniformity « such, that X # v, X, i.e. the uniform space uX is not uniformly realcompact.
Evidently, uX is C,—embedded in v, X. If uX is C—embedded in v, X, then v X = X = v, X,
but X # v, X, and we have a contradiction. O

The next theorem characterizes the Tychonoff Lindelof spaces by means of uniform structures.
Theorem 4.2. A Tychonoff space X is Lindelof if and only if ©X is uniformly realcompact
for any uniformity u on X.

Proof. If a Tychonoff space X is Lindeldf, then evidently uX is uniformly realcompact (]10,
3.8.3], item (2) of Theorem 4.1).

Let uX be uniformly realcompact for any uniformity « on X. Suppose that X is a non-Lindel6f
space. Then on X there is a countably centered z—filter p C Z(X) such that Np = @ [10, 3.8.3].
Then, by Lemma 4.1, there exists a uniformity v on X such that X # v, X, i.e. the uniform
space uX is not uniformly realcompact. A contradiction. O
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Corollary 4.2. Every open uniform subspace of the Rp—bounded metrizable uniform space
is uniformly realcompact.

Proof. Every Xp—bounded metrizable uniform space possesses a countable base [3]. Hence it is
hereditary Lindelof, i.e. any open subspace is Lindel6f [10, 3.8.A] and it is uniformly realcompact
with respect to each uniformity on it. O

Proposition 4.1. A closed uniform subspace of a uniformly realcompact space is uniformly
realcompact.

Proof. Let vY be a closed uniform subspace of the uniformly realcompact space uX, where
v = uly. A space X is complete under the uniformity w? (Proposition 2.1 and item (2) of
Theorem 4.4), hence vY is complete with respect to the uniformity u’|x. As uf|x C v}
(Proposition 2.1), vY is complete with respect to the uniformity vZ and the uniform space vY
is uniformly realcompact. O]

Proposition 4.2. A product of any collection of uniformly realcompact spaces is uniformly
realcompact if and only if every factor is uniformly realcompact.

Proof. Let {u;X; : t € T} be an arbitrary collection of the uniformly realcompact spaces, i.e.
uy Xy is complete under the uniformity uf, (Proposition 2.1) for any ¢ € T. Let X = [[{X; :
teT} u=][[{u:te€T}and v=][{uf, :t €T} Then the uniform space uX is complete
with respect to the uniformity v. Evidently, v C uZ (Proposition 2.1). So, uX is complete with
respect to the uniformity u? and ©.X is a uniformly realcompact space.

The proof of the second part follows from Proposition 4.9. O

From Propositions 4.1. and 4.2. the next statement immediately follows.

Corollary 4.2. A limit of an inverse system consisting of uniformly realcompact spaces and
”short” projections, being coz—mappings, is uniformly realcompact.

Corollary 4.3. Let {u;X; : t € T'} be a collection of uniformly realcompact uniform subspaces
of the uniformly realcompact space uX, i.e. u; = u|x, for any ¢t € T. Then the intersection
MN{X::t €T} =Y, equipped by the uniformity v = u|y, is uniformly realcompact.

Proof. Let X' = [[{X: : t € T} and «' = [[{ws : t € T'}. Then the uniform space u'X’ is
uniformly realcompact (by Proposition 4.2) and it is a uniform subspace of uTXT, where T is
a power of uX. The diagonal A of the power X7 is a closed subspace. Evidently, the uniform
space vY is uniformly homeomorphic to the closed in X’ uniform subspace AN X', equipped by
the uniformity «'|anx’, which is uniformly realcompact (by Proposition 4.1). O

Theorem 4.3. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a
uniformity on Y such that Z, A X = Z,, and every point of Y be a limit of a unique countably
centered z,—ultrafilter on uX. Then there exists a Rg—bounded uniformity v7 on Y such that
vilx = uf

Proof. For any point x € Y, p, is a unique countably centered z, —ultrafilter on u.X, converging
to the point x. Let Z € Z, be an arbitrary member.

Lemma 4.2. In the conditions of Theorem 4.3, if Z € Z,,, then theset Z = {zx €Y : Z € p,} is
closed in Y and for any collection of w—closed sets {Z,}peny in  uX
the equality NpenZn = NnenZy is fulfilled.

Proof. From Lemma 3.1, it follows that if 2 € [Z]y, then Z € p, and x € Z, i.e. [Z]y C Z. On
the other hand, Z C [Z]y, which means Z = [Z]y. It is clear, that NyenZn € NpenZn. Then
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T E ﬂneNZ, i.e. z € Z, foralln € N. Then Z, € p, for all n € N and p, is a countably centered
zy—ultrafilter on uX. Therefore N, enZ,, is u—closed and NpenZn € P, 1.6, T € NpeNnp. SO,
MneNZn C NMpenZn. The lemma is proved. O

We continue the proof of Theorem 4.3.

Let a = {U;}ien € B} be an arbitrary countable u—open covering of the uniformity u?
(Proposition 2.2).
Let ExyU; = Y\X\U; (i € N). Then ExyU; is open in Y and from the equality (ii) it follows,
that the family Frya = {EzyU,}ien is an open covering of Y. It is easy to check, that
the collection BY = {Exya : a € B%} of countable open coverings is a base of Rg—bounded
uniformity v7. By the construction Fxya A X = «, hence, v7|x = uZ,. O

Corollary 4.3. In the conditions of Theorem 4.3, for the uniformity v7 we have Z,: A X =
Zuz, = 2y

Proof. 1t follows from v7|x = v and the item (3) of Lemma 2.1. O

Theorem 4.4. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a
uniformity on Y such that Z, A X = Z,. The following statements are equivalent:

(1) Every coz—mapping f from uX into any uniformly realcompact uniform space vR has
a coz—extension to a coz—mapping f from vY into vR.

(2) uX is C,—embedded in vY.

(3) If a countable u—closed sets family in uX has empty intersection, then their closures in
vY have empty intersection.

(4) For any countable family of u—closed sets {Z, }nen in uX,

[MneNZnly = Mnen[Znly -
(5) Every point of vY is the limit of a unique countably centered z,—ultrafilter on uX.
(6) X CY Cu,X.
(7) vY = v, X.

Proof. (1) = (2) It is obvious, as ugR is uniformly realcompact.

(2) = (3) Let NpenZy, = 0 and Z, € Z,, n € N. For each n € N, Z,, = £,1(0), f, € Cu(X).
Because uX is dense and Cy—embedded in vY’, then the functions f, uniquely can be extended
to a functions f, € Cy(Y),n € N. Evidently, [Z,] C f71(0). We show that the family & =
{Y'\ f71(0) : n € N} is a covering of Y. Then the family o = {Y \ [Zy]nen}, a fortiori, will
be a covering of Y. Suppose, that y € Y \ Ua, ie. y € ﬂnean_l(O). Let p, be a countably
centered z,—ultrafilter such that Np, = {y}. Then 10 e py and p, A X is a countably
centered u—closed sets family. As X is dense in Y, p, A X # (). Let p be a countably centered
zy—ultrafilter containing p, A X. Then f750)NnX = 2, € p,n € N and hence NpenZy, # 0.
Contradiction. Otherwise, the family « is a covering of Y, therefore, Nyen[Zy,] = 0.

(3) = (4) [MnenZnly € Nnen|[Zn]y is obvious. Conversely, let © € Nyen[Zy]y. Then for any
v—closed neighborhood of x we have x € [V N Z,]y,n € N and = € Nuen[V N Z,]y. By (3) we
have Npen(V N Z,) # 0, ie. VN (NpenZn) # 0. So, x € [NpenZn), and (4) (NpenZy) holds.

(4) = (5) It is obvious.

(5) = (1) Let x € Y. Let p, denote the unique countably centered z,—ultrafilter on uX
with limit #. As in Lemma 2.2, we write f(p,) = {E € Z, : f~Y(FE) € p,}. This is a
countably centered prime z,—filter on the uniformly realcompact space vR. Then, by Corollary
2.2, fﬁ(pm) is contained in the unique countably centered z,—ultrafilter p*. So, by Theorem
3.2.,f4(p;) and p® are converging to the same limit. Denote this limit by {y} = "p® = f4(p,).
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It means that determines a mapping f from vY into vR. In case z € X, we have {z} = Npy,

so that y = f(z) = f(z) = Nfi(ps). Therefore f agrees with f on X. As f~Y(F) € 2,
for all F € Z,, then for a mapping f : ¥ — vR the equality f~UF) = f‘l(F) is fulfilled
for every F € Z,, where f~1(F) = {x € Y : f~Y(F) € p,} (as in the proof of Theorem
3.6). Then for any countable v—open covering 8 = {U;};en € v of the uniformly realcom-
pact ¥R the covering f‘l(ﬁ) = {f‘l(Ui)}ieN is open covering of Y, as, by the Theorem 4.3,
FYU) =Y\ fH(R\U;) (i € N) and f~1(8) € vZ. Hence f : v3Y — vR is uniformly con-
tinuous mapping. By Corollary 3.4, Z,: A X = Z,; = Z,. We note that f‘l(F) € Zyz for
any F € Z,. BEvidently, f"(F)NX = f~Y{F)NX = f~(F) and f~Y(F) € Z, A X. Then
there exist v—closed sets Z,, € Z, (n € N) such that Int(Z,) # 0 and f~1(F) = Npen{Z, N X}.
We have f~Y(F) = f~1(F) = Npen{Zn N X} = NnenZy (it follows from Theorem 4.3). Thus,
f*I(F) is a v—closed set, i.e. the mapping f : vY — vR is v—continuous.

(5) = (7) By Theorem 4.3, a completion #2Y of the space Y, with respect to the uniformity
v, coincides with the Wallman realcompactification v, X. From the items (1), (5) of Theorem
2.3 and item (8) of Theorem 2.4, it follows that each point of #2Y is the limit of a unique

countably centered z,—ultrafilter on uX, hence, by Corollary 4.3, each point of 175}7 is the limit

of a unique countably centered z,—ultrafilter on vY. By the item (8) of Theorem 2.104, we have
2Y = 0,Y = v, X.

(7)=(6) X CY Cu,Y =v,X.

(6) = (2) The uniform space uX is C,—embedded in the Wallman realcompactification v, X.
By the item (1) of Theorem 2.3, item (5) of Theorem 2.4, Theorem 4.3 and Corollary 3.2, it
follows that uX is C,—embedded in the uniform space vY. O

Corollary 4.4. Let uX be a dense uniform subspace of a uniform space vY. The following
statements are equivalent:

(1) Every coz—mapping f from uX into any uniformly realcompact uniform space ¥R has
a coz—extension to a coz—mapping f from vY into vR.

(2) uX is C,—embedded in vY.

(3) If a countable u—closed sets family in X has empty intersection, then their closures in
vY have empty intersection.

(4) For any countable family of u—closed sets {Z, }nen in uX,

[MnenZnly = NnenlZnly-
(5) Every point of vY is the limit of a unique countably centered z,—ultrafilter on uX.
(6) X CY Cu,X.
(7) vY = v, X.

Proof. Tt immediately follows from Theorem 4.4, since u = v|x, hence Z, A X = Z,,. O

Theorem 4.5. Every uniform space uX has the Wallman realcompactification v, X, con-
tained in a f—like compactification 5,X with the next equivalent properties:

(I) Every coz—mapping f from uX into any uniformly realcompact space vR has a contin-
uous coz—extension f from v, X into vY.
(IT) uX is Cy,—embedded in v, X.
(III) If a countable family of u—closed sets in uX has empty intersection, then their closures
in v, X have empty intersection.
(IV) For any countable family of u—closed sets {Z, }nen in uX,

mneN[Zn]vuX = [mnENZn]vuX .
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(V) Every point of v, X is the limit of a unique countably centered z,—ultrafilter.

The Wallman realcompactification v, X is unique in the following sense: if a uniform space
vY is a realcompactification of uX satisfies any one of listed conditions, then there exists a
coz—homeomorphism of v, X onto vY that leaves X pointwise fixed.

Proof. 1t is analogically to Theorem 3.8, for the case f—like compactification 3, X. U

o8]
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